POLIMORFISMO NO CRISTAL DE ÁCIDO ARAQUÍDICO: UMA INVESTIGAÇÃO VIBRACIONAL POR MEIO DAS ESPECTROSCOPIAS RAMAN E NO INFRAVERMELHO

Luanny M. B. Cardoso^{1*}, João G. Oliveira Neto², Adenilson O. Santos², Fábio F. Leite³, Adrya J. P. Cordeiro⁴, Paulo T. C. Freire⁴, Gislayllson D. S. Souza⁵, Francisco F. Sousa¹

Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém.¹ Universidade Federal do Maranhão, Imperatriz.² Universidade Federal do Amapá, Macapá.³ Departamento de Física, Universidade Federal do Ceará, Fortaleza.⁴ Instituto Federal do Pará, Campus Cametá, Cametá.⁵

*E-mail: *luanny.cardoso@icen.ufpa.br*¹

Ácidos graxos (AGs) monocarboxílicos são compostos químicos formados por cadeias de carbono contendo em suas extremidades um grupo carboxílico (COOH) e um grupo metil (CH₃). Eles possuem um rico polimorfismo, o qual depende da configuração dos dímeros formados dentro da rede cristalina a partir das ligações de hidrogênio (O-H···O), as quais são estabelecidas entre os grupos carboxílicos formando configuração do tipo $R_2^2(8)$. Quando o número de carbonos é par, os AGs podem cristalizar nas fases A₁, A₂, A₃, A_{super}, B_{o/m}, C, D e E_{o/m}; e quando o número de carbonos é ímpar, apresentam as seguintes fases: A', B', C', C", D' e E' [1]. O ácido araquídico (AA) estudado aqui é um AG saturado e monocarboxílico cuja formula molecular é CH₃-(CH₂)₁₈-COOH. Esse AG pode ser encontrado na composição química do óleo de amendoim, óleo de milho, na manteiga de cupuaçu e na manteiga de cacau. Neste trabalho, as fases polimórficas B_m e C do cristal de AA, ambas pertencentes à simetria monoclínica, com grupo espacial P21/c, foram obtidas e investigadas por meio das espectroscopias Raman e no infravermelho (IR). Além disso, as propriedades vibracionais foram avaliadas comparativamente a partir das modificações espectrais devido às diferentes configurações de dímeros associadas com as fases polimórficas distintas. Os espectros Raman das duas fases foram medidos na região de 30-3010 cm⁻¹, e os espectros de absorção no IR na região de 310–3200 cm⁻¹. Adicionalmente, para uma melhor atribuição dos modos de vibração inter e intramolecular, cálculos teóricos foram realizados por meio da teoria do funcional da densidade (DFT).

Palavras-chave: Ácido araquídico, Ácidos graxos, Polimorfismo.

[1] G. Gbabode, P. Negrier, D. Mondieig, E. Moreno, T. Calvet, and M. À. Cuevas-Diarte, "Fatty acids polymorphism and solid-state miscibility," *J. Alloys Compd.*, vol. 469, no. 1–2, pp. 539–551, Feb. 2009, doi: 10.1016/j.jallcom.2008.02.047.