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What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in

Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential

equations.

They can be,

• two- or three-dimensional.

• elliptic or parabolic.

• subjected to arbitrary boundary conditions on a rectangular domain

The solver implements a finite difference method for discretization together with a root-finding

method – Newton-Raphson method – with self-adaptative grid and consistency order.

The solver can provide error estimates for the computed solution.

1



What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in

Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential

equations.

They can be,

• two- or three-dimensional.

• elliptic or parabolic.

• subjected to arbitrary boundary conditions on a rectangular domain

The solver implements a finite difference method for discretization together with a root-finding

method – Newton-Raphson method – with self-adaptative grid and consistency order.

The solver can provide error estimates for the computed solution.

1



What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in

Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential

equations.

They can be,

• two- or three-dimensional.

• elliptic or parabolic.

• subjected to arbitrary boundary conditions on a rectangular domain

The solver implements a finite difference method for discretization together with a root-finding

method – Newton-Raphson method – with self-adaptative grid and consistency order.

The solver can provide error estimates for the computed solution.

1



What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in

Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential

equations.

They can be,

• two- or three-dimensional.

• elliptic or parabolic.

• subjected to arbitrary boundary conditions on a rectangular domain

The solver implements a finite difference method for discretization together with a root-finding

method – Newton-Raphson method – with self-adaptative grid and consistency order.

The solver can provide error estimates for the computed solution.

1



What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in

Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential

equations.

They can be,

• two- or three-dimensional.

• elliptic or parabolic.

• subjected to arbitrary boundary conditions on a rectangular domain

The solver implements a finite difference method for discretization together with a root-finding

method – Newton-Raphson method – with self-adaptative grid and consistency order.

The solver can provide error estimates for the computed solution.

1



Newton-Raphson Method

The Newton-Raphson method is a method to

find roots of functions, by means of their

derivatives.

By providing a good initial guess, it is possible

to obtain the root iteratively through,

xn+1 = xn −
f (xn)

f ′(xn)

Wikipedia: Newton’s method
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Expected Aspects for FIDISOL/CADSOL

• The system of PDEs must be written in the following way,

P(x , y ; u; ux , uy ; uxx , uyy , uxy ) = 0

• The Jacobian of all functions must be provided.

Easily provided by computing the derivative of P w.r.t {u; ux , uy ; uxx , uyy , uxy}
• A good initial guess for the solution must be given.

• The user has to provide boundary conditions, as well as a mesh for (x , y) with Nx × Ny

points.
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Numerical Approach

1. Start with an initial guess u(1), for which P(u(1)) 6= 0.

2. Introduce an improve solution,

u(2) = u(1) + s ∆u(1) (1)

where s is a relaxation factor (usually equal to 1), and suppose that the new improve

solution solves the system, i.e., P(u(2)) = 0.

3. Expand P(u(2)) in the small parameter ∆u(1) to first order,

0 = P(u(2)) = P(u(1) + s ∆u(1)) ≈ P(u(1)) +
∂P

∂u
(u(1))∆u(1) + . . .

4. Compute ∆u(1) through the above equation and obtain the new improve solution u(2)

using Eq. 1.

5. Repeat iteratively the last 3 steps until the Newton residual P(u(N)) is lower than a

prescribed tolerance.
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Error Estimation

FIDISOL/CADSOL can provide error estimates for the solution.

These errors are compose of,

• Newton residuals, P(u(N)).

• Discretization errors of the derivatives of the functions.

The discretization is done by using the backward finite difference method.

Other errors estimates can be computed using well-know black hole physics results, such as,

the Smarr Law or the 1st Law of Thermodynamics.
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Kerr Solution

The Kerr solution is one of the most relevant solution in General Relativity. It can be write, in

Boyer-Lindquist coordinate, as,

ds2 = −∆

Σ

(
dt − a sin2 θdϕ

)2
+ Σ

(
dr2

Σ
+ dθ2

)
+

sin2 θ

Σ

[
adt −

(
Σ + a2 cos2 θ

)]2
∆ = r2 − 2Mr + a2 , Σ = r2 + a2 cos2 θ

What if we did not had an analytical close form of the Kerr solution?

How would we obtain the Kerr metric?

6



Kerr Solution

The Kerr solution is one of the most relevant solution in General Relativity. It can be write, in

Boyer-Lindquist coordinate, as,

ds2 = −∆

Σ

(
dt − a sin2 θdϕ

)2
+ Σ

(
dr2

Σ
+ dθ2

)
+

sin2 θ

Σ

[
adt −

(
Σ + a2 cos2 θ

)]2
∆ = r2 − 2Mr + a2 , Σ = r2 + a2 cos2 θ

What if we did not had an analytical close form of the Kerr solution?

How would we obtain the Kerr metric?

6



Ansatz Metric

The ansatz metric which is suitable for our problem is,

ds2 = −e2F0Ndt2 + e2F1

(
dr2

N
+ r2dθ2

)
+ e2F2r2 sin2 θ (dϕ−Wdt)2

, N = 1− rH
r

→ F1,F2,F0 and W are ansatz function that depend on {r , θ}.
→ rH is the radial coordinate of the event horizon and is an input parameter of the problem.
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Connection between Metrics

The Kerr solution can be written through the ansatz metric. However, it will be written in a

non-standard coordinate system.

This non-standard coordinate system relates to the Boyer-Lindquist coordinates by a radial

transformation,

r = R − a2

RH

→ R and RH is the radial coordinate and radius of the event horizon in Boyer-Lindquist

coordinates.

→ a = J/M is the reduced angular momentum.
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Connection between Metrics

The corresponding expressions for the metric functions read,

e2F1 =
(

1− ct
r

)2

+ ct(ct − rH)
cos2 θ

r2

e2F2 = e−2F1

{[(
1− ct

r

)2

+
ct(ct − rH)

r2

]2

+ ct(rH − ct)
(

1− rH
r

) sin2 θ

r2

}

F0 = −F2 , W = e−2(F1+F2)
√
ct(ct − rH)

rH − 2ct
r3

(
1− ct

r

)
→ ct < 0 is a constant that does not have a transparent meaning, but is related to the

non-stationary of the solution.

Several quantities of interest can be computed,

M =
1

2
(rH − 2ct) , J =

1

2

√
ct(ct − rH)(rH − 2ct) , AH = 4π(rH − ct)(rH − 2ct)

TH =
rH

4π(rH − ct)(rH − 2ct)
, ΩH =

√
ct(ct − rH)

(rH − ct)(rH − 2ct)
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Boundary Conditions

We want to obtain a regular, stationary, axisymmetric and asymptotically flat solution. This

impose the following boundary conditons,

• Asymptotic boundary conditions: Asymptotically flatness implies that,

lim
r→∞

Fi = lim
r→∞

W = 0

• Axis boundary conditions: Axial symmetry and regularity implies, on the poles, that,

∂θFi = ∂θW = 0 , at θ = {0, π}

The absence of conical singularities impose that, on the poles, F1 = F2.

Furthermore, due to the symmetry on the equatorial plane, we only compute everything on

the region θ ∈
[
0, π2

]
. Therefore, we also impose the following boundary conditions at the

equatorial plane,

∂θFi = ∂θW = 0 , at θ =
π

2
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Boundary Conditions

• Event Horizon boundary conditions: To simplify this study, let’s introduce a radial

coordinate transformation, x =
√
r2 − r2

H .

This way, we can do a series expansion of all

functions on the horizon, x = 0, and find,

Fi = Fi
(0) + x2Fi

(2) +O(x4)

W = ΩH +O(x2)

→ ΩH is a constant that can be interpreted as the event horizon angular velocity, and is

an input parameter of the problem.

It is natural now to impose the following boundary conditions at the horizon,

∂xFi = 0 , W = ΩH , at r = rH
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Equation of Motion

Vacuum Einstein equations,

Rµν −
1

2
gµνR = 0

To solve these equations, we will use everything we talked so far, including the radial coordinate

transformation x =
√

r2 − r2
H . Thus, we have to use a new version of the ansatz metric,

ds2 = −e2F0x2 H(x)

S(x)
+ e2F1

(
dx2

H(x)
+ S(x)dθ2

)
+ e2F2S(x) sin2 (dϕ−Wdt)2

S(x) = x2 + rH
2 and H(x) =

√
S(x)

rH +
√
S(x)
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Let’s go to Mathematica!
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Combination of Einstein Equations

FIDISOL/CADSOL likes to solve system of PDEs where each one has only second derivatives

of a single functions. Thus, we have to combine the Einstein equations in the following way,

−G t
t + G r

r + G θθ − Gϕ
ϕ = 0

G t
t + G r

r + G θ
θ − Gϕ

ϕ + 2WG t
ϕ = 0

−G t
t + G r

r + G θθ + Gϕ
ϕ − 2WG t

ϕ = 0

G t
ϕ = 0

We can define two other equations that will serve as constrains and will be used to test the

numerical accuracy of the solutions,

G r
r − G θθ = 0

G θ
r = 0

14



Combination of Einstein Equations

FIDISOL/CADSOL likes to solve system of PDEs where each one has only second derivatives

of a single functions. Thus, we have to combine the Einstein equations in the following way,

−G t
t + G r

r + G θθ − Gϕ
ϕ = 0

G t
t + G r

r + G θ
θ − Gϕ

ϕ + 2WG t
ϕ = 0

−G t
t + G r

r + G θθ + Gϕ
ϕ − 2WG t

ϕ = 0

G t
ϕ = 0

We can define two other equations that will serve as constrains and will be used to test the

numerical accuracy of the solutions,

G r
r − G θθ = 0

G θ
r = 0

14



Boundary Conditions Revisited

• Asymptotic boundary conditions: limr→∞ Fi = limr→∞W = 0

• Axis boundary conditions: ∂θFi = ∂θW = 0 , at θ = {0, π}

• Equatorial boundary conditions: ∂θFi = ∂θW = 0 , at θ =
π

2

• Event Horizon boundary conditions: ∂xFi = 0 , W = ΩH , at r = rH

15



Radial Coordinate Transformation

Unfortunately, computers do not like infinite, and our radial coordinate x ranges from 0 to ∞.

Thus, a compactification is required. Such is done by,

x̄ =
x

1 + x

The transformation implies a substitution of the derivatives of the ansatz functions,

∂xF −→ (1− x̄)2
∂x̄F , ∂xxF −→ (1− x̄)4

∂x̄ x̄F − 2 (1− x̄)3
∂x̄F

16



Newton Residual for the Boundary Conditions

Take as an example the boundary conditions at the horizon,

∂xFi = 0 , W = ΩH , at r = rH

Those boundaries can be rewritten as,

∂xFi = 0 , W − ΩH = 0 , at r = rH

This way, the solver just has to find the roots of those boundaries, which is exactly what

FIDISOL/CADSOL is good at!

17



Run FIDISOL/CADSOL

For Linux/macOS,

1. Compile the file “2-CAD.f”with the flags

“-c”and “-O2”,

• ifort -c -O2 2-CAD.f

2. Compile the file “v1.for”with the same

flags,

• ifort -c -O2 v1.for

3. Compile together both outputs of the

above codes without flags,

• ifort 2-CAD.o v1.o -o runKerr

4. Run the executable “runKerr”.

For Windows,

1. Compile the file “2-CAD.f”with the flags

“/nolink”and “/O2”,

• ifort /nolink /O2 2-CAD.f

2. Compile the file “v1.for”with the same

flags,

• ifort /nolink /O2 v1.for

3. Compile together both outputs of the

above codes without flags,

• ifort 2-CAD.obj v1.obj /exe runKerr

4. Run the executable “runKerr”.

18



Comparison Exact Kerr with Computed Kerr
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Comparison Exact Kerr with Computed Kerr
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Boson Stars

Boson stars are horizonless, self-gravitating, solitonic-like, scalar field solutions of the

Einstein-Klein-Gordon action,

S =

∫
d4x
√
−g
[

R

16π
− gµν∂µΨ∗∂νΨ− V (|Ψ|2)

]
The potential has the form,

V (|Ψ|2) = µ2|Ψ|2 + . . .

→ µ is the mass of the field.

→ “. . . ”correspond to higher orders terms of the scalar field, e.g. self-interactions.
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Differences from the Kerr Problem

Key differences from the Kerr problem,

• Boson stars are horizonless, thus rH = 0 and is no longer an input parameter of the

problem.

• Presence of a scalar field Ψ. Hence, we have a new ansatz function to compute.

• Redefinition of W →W /r .

These changes, introduces a new ansatz metric,

ds2 = −e2F0dt2 + e2F1
(
dr2 + r2dθ2

)
+ e2F2r2 sin2 θ

(
dϕ− W

r
dt

)2

Ψ = φ e−i(ωt−mϕ)

→ φ is a new ansatz function that depends on {r , θ}
→ ω is the angular frequency of the scalar field.

→ m = ±{1, 2, . . . } is the azimuthal harmonic index.
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Boundary Conditions for φ

• Asymptotic boundary condition: Asymptotically flatness implies that,

lim
r→∞

φ = 0

• Axis boundary condition: Axial symmetry and regularity implies, on the poles, that,

φ = 0 , at θ = {0, π}

As for the Kerr problem, we have a equatorial symmetry, thus we compute everything on

the region θ ∈
[
0, π2

]
, and we impose, at the equatorial plane,

∂θφ = 0, at θ =
π

2

• Origin boundary condition: Performing a power expansion near the origin, r = 0, for the

scalar field, φ, we obtain,

φ = φ0 +O(r2)

Therefore, we impose,

∂rφ = 0 , at r = 0
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New Equations of Motion

The equations of motion are now composed by the Einstein equations and the Klein-Gordon

equation,

Gµν = Rµν −
1

2
gµνR = 8πTµν , �φ = µ2φ

→ � is the d’Alembert operator.

→ Tµν = ∂µΨ∗∂νΨ + ∂νΨ∗∂µΨ− gµν
[

1
2g

αβ (∂αΨ∗∂βΨ + ∂βΨ∗∂αΨ) + µ2Ψ∗Ψ
]

To perform the numerical integration, it is useful and convenient to use dimensionless variables.

such as,

r → µr , ω → ω/µ , φ→ φ/
√

4π
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Let’s go our dear friend Mathematica!
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Mass and Angular Momentum from Asymptotic Behaviour

The mass and angular momentum of the boson star can be obtained through the asymptotic

behaviour of the metric functions,

gtt = −e2F0 + e2F2W 2 sin2 θ = −1 +
2M

r
+ . . . , gtϕ = −e2F2Wr sin2 θ = −2J

r
sin2 θ + . . .

Asymptotically, we have,

F0 = −M

r
+O

(
1

r2

)
, W =

2J

r2
+O

(
1

r3

)

With a simple linearization in 1/r and 1/r2, we obtain the mass and angular momentum,

respectively.
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Mass and Angular Momentum from the Komar Integrals

Komar integrals are defined as,

M = −2

∫
Σ

dSµ

(
Tµ
ν t

ν − 1

2
Ttµ

)
, J =

∫
Σ

dSµ

(
Tµ
ν ϕ

ν − 1

2
Tϕµ

)
→ Σ is a spacelike surface bounded by a 2-sphere at spatial infinity.

→ tµ and ϕµ are the timelike and rotating Killing vectors, respectively.

Expanding the integrals,

M = −
∫ ∞

0

dr

∫ π

0

dθ r2 sin θ eF0+2F1+F2

(
T t
t −

1

2
T

)

J =

∫ ∞
0

dr

∫ π

0

dθ r2 sin θ eF0+2F1+F2T t
ϕ
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Compactness

Boson stars do not have a well-defined surface, since they decays exponentially. Nonetheless, it

is possible to define a “surface”, by performing the following steps,

1. Compute the perimeteral radius,R99, which contains 99% of the total mass, M99.

Perimeteral radius is a radial coordinate R, such that a circumference along the equatorial

plane has perimeter 2πR, and relates to r by R = eF2r .

2. Define the inverse compactness as the ratio between R99 and the Schwarzschild radius

associated with a 99% of the boson star mass, RSchw = 2M99

Compactness−1 =
R99

2M99

28



Compactness

Boson stars do not have a well-defined surface, since they decays exponentially.

Nonetheless, it

is possible to define a “surface”, by performing the following steps,

1. Compute the perimeteral radius,R99, which contains 99% of the total mass, M99.

Perimeteral radius is a radial coordinate R, such that a circumference along the equatorial

plane has perimeter 2πR, and relates to r by R = eF2r .

2. Define the inverse compactness as the ratio between R99 and the Schwarzschild radius

associated with a 99% of the boson star mass, RSchw = 2M99

Compactness−1 =
R99

2M99

28



Compactness

Boson stars do not have a well-defined surface, since they decays exponentially. Nonetheless, it

is possible to define a “surface”, by performing the following steps,

1. Compute the perimeteral radius,R99, which contains 99% of the total mass, M99.

Perimeteral radius is a radial coordinate R, such that a circumference along the equatorial

plane has perimeter 2πR, and relates to r by R = eF2r .

2. Define the inverse compactness as the ratio between R99 and the Schwarzschild radius

associated with a 99% of the boson star mass, RSchw = 2M99

Compactness−1 =
R99

2M99

28



Compactness

Boson stars do not have a well-defined surface, since they decays exponentially. Nonetheless, it

is possible to define a “surface”, by performing the following steps,

1. Compute the perimeteral radius,R99, which contains 99% of the total mass, M99.

Perimeteral radius is a radial coordinate R, such that a circumference along the equatorial

plane has perimeter 2πR, and relates to r by R = eF2r .

2. Define the inverse compactness as the ratio between R99 and the Schwarzschild radius

associated with a 99% of the boson star mass, RSchw = 2M99

Compactness−1 =
R99

2M99

28



Compactness

Boson stars do not have a well-defined surface, since they decays exponentially. Nonetheless, it

is possible to define a “surface”, by performing the following steps,

1. Compute the perimeteral radius,R99, which contains 99% of the total mass, M99.

Perimeteral radius is a radial coordinate R, such that a circumference along the equatorial

plane has perimeter 2πR, and relates to r by R = eF2r .

2. Define the inverse compactness as the ratio between R99 and the Schwarzschild radius

associated with a 99% of the boson star mass, RSchw = 2M99

Compactness−1 =
R99

2M99
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Ergoregions

Ergoregions are regions where the norm of

ξ = ∂t becomes positive, and are bounded by

surface where ξ2 = 0.

To verify that a boson star has ergoregions, we

just verify the existence of zeros for ξ2,

ξ2 = gtt = −e2F0 + W 2e2F2 sin2 θ = 0
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Light rings

1. Start with the effective Lagrangian for geodesic motion of a massless test particle, on the

equatorial plane,

L = e2F1 ṙ2 + e2F2r2

(
ϕ̇− W

r
ṫ

)2

− e2F0 ṫ2 = 0

2. Use the isometries of the problem to write ṫ and ϕ̇ in terms of the energy E and angular

momentum L of the particle,

E = (e2F0 − e2F2W 2)ṫ + e2F2rW ϕ̇

L = e2F2r2

(
ϕ̇− W

r
ṫ

)
3. Rewrite the Lagrangian and obtain an equation for ṙ2,

ṙ2 = V (r) = e2F1

[
e−2F0

(
E − L

W

r

)2

− e−2F2
L2

r2

]
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L = e2F2r2

(
ϕ̇− W

r
ṫ
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Light Rings

4. Compute the zeros of both the potential and its first derivative, V (r) = V ′(r) = 0.

→ V (r) = 0 will give two algebraic equations for the impact parameter of the massless

particle, b± = L±/E±. ± correspond to co- and counter-rotating orbits.

→ V ′(r) = 0, together with the impact parameters, will give the radial coordinate for

the co- and counter-rotating light rings.

In the end, we just have to find the roots of the following equations,

eF0 [1− r (F0
′ − F2

′)]± eF2 (W − rW ′) = 0

31
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Energy Conditions

For any timelike vector field Xµ, we have,

• Weak Energy Condition: TµνX
µX ν ≥ 0

→ The energy density measured by any timelike observer must be non-negative

For a Zero Angular Momentum Observer, this conditions translates to,

−T t
t − T t

ϕ

gϕt

g tt
≥ 0

• Strong Energy Condition:
(
Tµν − 1

2gµνT
)
XµX ν ≥ 0

→ Matter must gravitate towards matter.

For a Zero Angular Momentum Observer, this conditions translates to,

−
(
T t
t −

1

2
T

)
− T t

ϕ

gϕt

g tt
≥ 0
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