Numerical Integration of Partial Differential Equations Tutorial on FIDISOL/CADSOL

Jorge Delgado
$22^{\text {nd }}$ and 24th of November 2022

What is FIDISOL/CADSOL?

What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in
Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential equations.

What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential equations.

They can be,

- two- or three-dimensional.
- elliptic or parabolic.
- subjected to arbitrary boundary conditions on a rectangular domain

What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in
Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential equations.

They can be,

- two- or three-dimensional.
- elliptic or parabolic.
- subjected to arbitrary boundary conditions on a rectangular domain

The solver implements a finite difference method for discretization together with a root-finding method - Newton-Raphson method - with self-adaptative grid and consistency order.

What is FIDISOL/CADSOL?

FIDISOL/CADSOL is a professional package, written in Fortran 90, develop by a team in
Karlsruhe Institute of Technology, that can solve nonlinear systems of partial differential equations.

They can be,

- two- or three-dimensional.
- elliptic or parabolic.
- subjected to arbitrary boundary conditions on a rectangular domain

The solver implements a finite difference method for discretization together with a root-finding method - Newton-Raphson method - with self-adaptative grid and consistency order.

The solver can provide error estimates for the computed solution.

Newton-Raphson Method

Newton-Raphson Method

The Newton-Raphson method is a method to find roots of functions, by means of their derivatives.

By providing a good initial guess, it is possible to obtain the root iteratively through,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Wikipedia: Newton's method

Expected Aspects for FIDISOL/CADSOL

Expected Aspects for FIDISOL/CADSOL

- The system of PDEs must be written in the following way,

$$
P\left(x, y ; u ; u_{x}, u_{y} ; u_{x x}, u_{y y}, u_{x y}\right)=0
$$

Expected Aspects for FIDISOL/CADSOL

- The system of PDEs must be written in the following way,

$$
P\left(x, y ; u ; u_{x}, u_{y} ; u_{x x}, u_{y y}, u_{x y}\right)=0
$$

- The Jacobian of all functions must be provided.

Easily provided by computing the derivative of P w.r.t $\left\{u ; u_{x}, u_{y} ; u_{x x}, u_{y y}, u_{x y}\right\}$

Expected Aspects for FIDISOL/CADSOL

- The system of PDEs must be written in the following way,

$$
P\left(x, y ; u ; u_{x}, u_{y} ; u_{x x}, u_{y y}, u_{x y}\right)=0
$$

- The Jacobian of all functions must be provided.

Easily provided by computing the derivative of P w.r.t $\left\{u ; u_{x}, u_{y} ; u_{x x}, u_{y y}, u_{x y}\right\}$

- A good initial guess for the solution must be given.

Expected Aspects for FIDISOL/CADSOL

- The system of PDEs must be written in the following way,

$$
P\left(x, y ; u ; u_{x}, u_{y} ; u_{x x}, u_{y y}, u_{x y}\right)=0
$$

- The Jacobian of all functions must be provided.

Easily provided by computing the derivative of P w.r.t $\left\{u ; u_{x}, u_{y} ; u_{x x}, u_{y y}, u_{x y}\right\}$

- A good initial guess for the solution must be given.
- The user has to provide boundary conditions, as well as a mesh for (x, y) with $N_{x} \times N_{y}$ points.

Numerical Approach

Numerical Approach

1. Start with an initial guess $u^{(1)}$, for which $P\left(u^{(1)}\right) \neq 0$.

Numerical Approach

1. Start with an initial guess $u^{(1)}$, for which $P\left(u^{(1)}\right) \neq 0$.
2. Introduce an improve solution,

$$
\begin{equation*}
u^{(2)}=u^{(1)}+s \Delta u^{(1)} \tag{1}
\end{equation*}
$$

where s is a relaxation factor (usually equal to 1), and suppose that the new improve solution solves the system, i.e., $P\left(u^{(2)}\right)=0$.

Numerical Approach

1. Start with an initial guess $u^{(1)}$, for which $P\left(u^{(1)}\right) \neq 0$.
2. Introduce an improve solution,

$$
\begin{equation*}
u^{(2)}=u^{(1)}+s \Delta u^{(1)} \tag{1}
\end{equation*}
$$

where s is a relaxation factor (usually equal to 1), and suppose that the new improve solution solves the system, i.e., $P\left(u^{(2)}\right)=0$.
3. Expand $P\left(u^{(2)}\right)$ in the small parameter $\Delta u^{(1)}$ to first order,

$$
0=P\left(u^{(2)}\right)=P\left(u^{(1)}+s \Delta u^{(1)}\right) \approx P\left(u^{(1)}\right)+\frac{\partial P}{\partial u}\left(u^{(1)}\right) \Delta u^{(1)}+\ldots
$$

Numerical Approach

1. Start with an initial guess $u^{(1)}$, for which $P\left(u^{(1)}\right) \neq 0$.
2. Introduce an improve solution,

$$
\begin{equation*}
u^{(2)}=u^{(1)}+s \Delta u^{(1)} \tag{1}
\end{equation*}
$$

where s is a relaxation factor (usually equal to 1), and suppose that the new improve solution solves the system, i.e., $P\left(u^{(2)}\right)=0$.
3. Expand $P\left(u^{(2)}\right)$ in the small parameter $\Delta u^{(1)}$ to first order,

$$
0=P\left(u^{(2)}\right)=P\left(u^{(1)}+s \Delta u^{(1)}\right) \approx P\left(u^{(1)}\right)+\frac{\partial P}{\partial u}\left(u^{(1)}\right) \Delta u^{(1)}+\ldots
$$

4. Compute $\Delta u^{(1)}$ through the above equation and obtain the new improve solution $u^{(2)}$ using Eq. 1 .

Numerical Approach

1. Start with an initial guess $u^{(1)}$, for which $P\left(u^{(1)}\right) \neq 0$.
2. Introduce an improve solution,

$$
\begin{equation*}
u^{(2)}=u^{(1)}+s \Delta u^{(1)} \tag{1}
\end{equation*}
$$

where s is a relaxation factor (usually equal to 1), and suppose that the new improve solution solves the system, i.e., $P\left(u^{(2)}\right)=0$.
3. Expand $P\left(u^{(2)}\right)$ in the small parameter $\Delta u^{(1)}$ to first order,

$$
0=P\left(u^{(2)}\right)=P\left(u^{(1)}+s \Delta u^{(1)}\right) \approx P\left(u^{(1)}\right)+\frac{\partial P}{\partial u}\left(u^{(1)}\right) \Delta u^{(1)}+\ldots
$$

4. Compute $\Delta u^{(1)}$ through the above equation and obtain the new improve solution $u^{(2)}$ using Eq. 1.
5. Repeat iteratively the last 3 steps until the Newton residual $P\left(u^{(N)}\right)$ is lower than a prescribed tolerance.

Error Estimation

FIDISOL/CADSOL can provide error estimates for the solution.
These errors are compose of,

Error Estimation

FIDISOL/CADSOL can provide error estimates for the solution.
These errors are compose of,

- Newton residuals, $P\left(u^{(N)}\right)$.

Error Estimation

FIDISOL/CADSOL can provide error estimates for the solution.
These errors are compose of,

- Newton residuals, $P\left(u^{(N)}\right)$.
- Discretization errors of the derivatives of the functions.

The discretization is done by using the backward finite difference method.

Error Estimation

FIDISOL/CADSOL can provide error estimates for the solution.
These errors are compose of,

- Newton residuals, $P\left(u^{(N)}\right)$.
- Discretization errors of the derivatives of the functions.

The discretization is done by using the backward finite difference method.
Other errors estimates can be computed using well-know black hole physics results, such as, the Smarr Law or the $1^{\text {st }}$ Law of Thermodynamics.

Kerr Solution

The Kerr solution is one of the most relevant solution in General Relativity. It can be write, in Boyer-Lindquist coordinate, as,

$$
\begin{gathered}
d s^{2}=-\frac{\Delta}{\Sigma}\left(d t-a \sin ^{2} \theta d \varphi\right)^{2}+\Sigma\left(\frac{d r^{2}}{\Sigma}+d \theta^{2}\right)+\frac{\sin ^{2} \theta}{\Sigma}\left[a d t-\left(\Sigma+a^{2} \cos ^{2} \theta\right)\right]^{2} \\
\Delta=r^{2}-2 M r+a^{2}, \quad \Sigma=r^{2}+a^{2} \cos ^{2} \theta
\end{gathered}
$$

Kerr Solution

The Kerr solution is one of the most relevant solution in General Relativity. It can be write, in Boyer-Lindquist coordinate, as,

$$
\begin{gathered}
d s^{2}=-\frac{\Delta}{\Sigma}\left(d t-a \sin ^{2} \theta d \varphi\right)^{2}+\Sigma\left(\frac{d r^{2}}{\Sigma}+d \theta^{2}\right)+\frac{\sin ^{2} \theta}{\Sigma}\left[a d t-\left(\Sigma+a^{2} \cos ^{2} \theta\right)\right]^{2} \\
\Delta=r^{2}-2 M r+a^{2}, \quad \Sigma=r^{2}+a^{2} \cos ^{2} \theta
\end{gathered}
$$

What if we did not had an analytical close form of the Kerr solution?

How would we obtain the Kerr metric?

Ansatz Metric

The ansatz metric which is suitable for our problem is,

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}, \quad N=1-\frac{r_{H}}{r}
$$

Ansatz Metric

The ansatz metric which is suitable for our problem is,

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}, \quad N=1-\frac{r_{H}}{r}
$$

$\rightarrow F_{1}, F_{2}, F_{0}$ and W are ansatz function that depend on $\{r, \theta\}$.

Ansatz Metric

The ansatz metric which is suitable for our problem is,

$$
d s^{2}=-e^{2 F_{0}} N d t^{2}+e^{2 F_{1}}\left(\frac{d r^{2}}{N}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta(d \varphi-W d t)^{2}, \quad N=1-\frac{r_{H}}{r}
$$

$\rightarrow F_{1}, F_{2}, F_{0}$ and W are ansatz function that depend on $\{r, \theta\}$.
$\rightarrow r_{H}$ is the radial coordinate of the event horizon and is an input parameter of the problem.

Connection between Metrics

The Kerr solution can be written through the ansatz metric. However, it will be written in a non-standard coordinate system.

Connection between Metrics

The Kerr solution can be written through the ansatz metric. However, it will be written in a non-standard coordinate system.

This non-standard coordinate system relates to the Boyer-Lindquist coordinates by a radial transformation,

$$
r=R-\frac{a^{2}}{R_{H}}
$$

$\rightarrow R$ and R_{H} is the radial coordinate and radius of the event horizon in Boyer-Lindquist coordinates.
$\rightarrow a=J / M$ is the reduced angular momentum.

Connection between Metrics

The corresponding expressions for the metric functions read,

$$
\begin{aligned}
& e^{2 F_{1}}=\left(1-\frac{c_{t}}{r}\right)^{2}+c_{t}\left(c_{t}-r_{H}\right) \frac{\cos ^{2} \theta}{r^{2}} \\
& e^{2 F_{2}}=e^{-2 F_{1}}\left\{\left[\left(1-\frac{c_{t}}{r}\right)^{2}+\frac{c_{t}\left(c_{t}-r_{H}\right)}{r^{2}}\right]^{2}+c_{t}\left(r_{H}-c_{t}\right)\left(1-\frac{r_{H}}{r}\right) \frac{\sin ^{2} \theta}{r^{2}}\right\} \\
& F_{0}=-F_{2}, \quad W=e^{-2\left(F_{1}+F_{2}\right)} \sqrt{c_{t}\left(c_{t}-r_{H}\right)} \frac{r_{H}-2 c_{t}}{r^{3}}\left(1-\frac{c_{t}}{r}\right)
\end{aligned}
$$

$\rightarrow c_{t}<0$ is a constant that does not have a transparent meaning, but is related to the non-stationary of the solution.

Connection between Metrics

The corresponding expressions for the metric functions read,

$$
\begin{aligned}
& e^{2 F_{1}}=\left(1-\frac{c_{t}}{r}\right)^{2}+c_{t}\left(c_{t}-r_{H}\right) \frac{\cos ^{2} \theta}{r^{2}} \\
& e^{2 F_{2}}=e^{-2 F_{1}}\left\{\left[\left(1-\frac{c_{t}}{r}\right)^{2}+\frac{c_{t}\left(c_{t}-r_{H}\right)}{r^{2}}\right]^{2}+c_{t}\left(r_{H}-c_{t}\right)\left(1-\frac{r_{H}}{r}\right) \frac{\sin ^{2} \theta}{r^{2}}\right\} \\
& F_{0}=-F_{2}, W=e^{-2\left(F_{1}+F_{2}\right)} \sqrt{c_{t}\left(c_{t}-r_{H}\right)} \frac{r_{H}-2 c_{t}}{r^{3}}\left(1-\frac{c_{t}}{r}\right)
\end{aligned}
$$

$\rightarrow c_{t}<0$ is a constant that does not have a transparent meaning, but is related to the non-stationary of the solution.

Several quantities of interest can be computed,

$$
\begin{gathered}
M=\frac{1}{2}\left(r_{H}-2 c_{t}\right), \quad J=\frac{1}{2} \sqrt{c_{t}\left(c_{t}-r_{H}\right)}\left(r_{H}-2 c_{t}\right), \quad A_{H}=4 \pi\left(r_{H}-c_{t}\right)\left(r_{H}-2 c_{t}\right) \\
T_{H}=\frac{r_{H}}{4 \pi\left(r_{H}-c_{t}\right)\left(r_{H}-2 c_{t}\right)}, \quad \Omega_{H}=\frac{\sqrt{c_{t}\left(c_{t}-r_{H}\right)}}{\left(r_{H}-c_{t}\right)\left(r_{H}-2 c_{t}\right)}
\end{gathered}
$$

Boundary Conditions

We want to obtain a regular, stationary, axisymmetric and asymptotically flat solution. This impose the following boundary conditons,

Boundary Conditions

We want to obtain a regular, stationary, axisymmetric and asymptotically flat solution. This impose the following boundary conditons,

- Asymptotic boundary conditions: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} F_{i}=\lim _{r \rightarrow \infty} W=0
$$

Boundary Conditions

We want to obtain a regular, stationary, axisymmetric and asymptotically flat solution. This impose the following boundary conditons,

- Asymptotic boundary conditions: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} F_{i}=\lim _{r \rightarrow \infty} W=0
$$

- Axis boundary conditions: Axial symmetry and regularity implies, on the poles, that,

$$
\partial_{\theta} F_{i}=\partial_{\theta} W=0, \text { at } \theta=\{0, \pi\}
$$

Boundary Conditions

We want to obtain a regular, stationary, axisymmetric and asymptotically flat solution. This impose the following boundary conditons,

- Asymptotic boundary conditions: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} F_{i}=\lim _{r \rightarrow \infty} W=0
$$

- Axis boundary conditions: Axial symmetry and regularity implies, on the poles, that,

$$
\partial_{\theta} F_{i}=\partial_{\theta} W=0, \text { at } \theta=\{0, \pi\}
$$

The absence of conical singularities impose that, on the poles, $F_{1}=F_{2}$.

Boundary Conditions

We want to obtain a regular, stationary, axisymmetric and asymptotically flat solution. This impose the following boundary conditons,

- Asymptotic boundary conditions: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} F_{i}=\lim _{r \rightarrow \infty} W=0
$$

- Axis boundary conditions: Axial symmetry and regularity implies, on the poles, that,

$$
\partial_{\theta} F_{i}=\partial_{\theta} W=0, \text { at } \theta=\{0, \pi\}
$$

The absence of conical singularities impose that, on the poles, $F_{1}=F_{2}$. Furthermore, due to the symmetry on the equatorial plane, we only compute everything on the region $\theta \in\left[0, \frac{\pi}{2}\right]$. Therefore, we also impose the following boundary conditions at the equatorial plane,

$$
\partial_{\theta} F_{i}=\partial_{\theta} W=0, \text { at } \theta=\frac{\pi}{2}
$$

Boundary Conditions

- Event Horizon boundary conditions: To simplify this study, let's introduce a radial coordinate transformation, $x=\sqrt{r^{2}-r_{H}^{2}}$.

Boundary Conditions

- Event Horizon boundary conditions: To simplify this study, let's introduce a radial coordinate transformation, $x=\sqrt{r^{2}}-r_{H}^{2}$. This way, we can do a series expansion of all functions on the horizon, $x=0$, and find,

$$
\begin{aligned}
& F_{i}=F_{i}^{(0)}+x^{2} F_{i}^{(2)}+\mathcal{O}\left(x^{4}\right) \\
& W=\Omega_{H}+\mathcal{O}\left(x^{2}\right)
\end{aligned}
$$

Boundary Conditions

- Event Horizon boundary conditions: To simplify this study, let's introduce a radial coordinate transformation, $x=\sqrt{r^{2}}-r_{H}^{2}$. This way, we can do a series expansion of all functions on the horizon, $x=0$, and find,

$$
\begin{aligned}
& F_{i}=F_{i}^{(0)}+x^{2} F_{i}^{(2)}+\mathcal{O}\left(x^{4}\right) \\
& W=\Omega_{H}+\mathcal{O}\left(x^{2}\right)
\end{aligned}
$$

$\rightarrow \Omega_{H}$ is a constant that can be interpreted as the event horizon angular velocity, and is an input parameter of the problem.

Boundary Conditions

- Event Horizon boundary conditions: To simplify this study, let's introduce a radial coordinate transformation, $x=\sqrt{r^{2}}-r_{H}^{2}$. This way, we can do a series expansion of all functions on the horizon, $x=0$, and find,

$$
\begin{aligned}
& F_{i}=F_{i}^{(0)}+x^{2} F_{i}^{(2)}+\mathcal{O}\left(x^{4}\right) \\
& W=\Omega_{H}+\mathcal{O}\left(x^{2}\right)
\end{aligned}
$$

$\rightarrow \Omega_{H}$ is a constant that can be interpreted as the event horizon angular velocity, and is an input parameter of the problem.
It is natural now to impose the following boundary conditions at the horizon,

$$
\partial_{x} F_{i}=0, \quad W=\Omega_{H}, \text { at } r=r_{H}
$$

Equation of Motion

Equation of Motion

Vacuum Einstein equations,

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0
$$

Equation of Motion

Vacuum Einstein equations,

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0
$$

To solve these equations, we will use everything we talked so far, including the radial coordinate transformation $x=\sqrt{r^{2}-r_{H}^{2}}$.

Equation of Motion

Vacuum Einstein equations,

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=0
$$

To solve these equations, we will use everything we talked so far, including the radial coordinate transformation $x=\sqrt{r^{2}-r_{H}^{2}}$. Thus, we have to use a new version of the ansatz metric,

$$
\begin{gathered}
d s^{2}=-e^{2 F_{0}} x^{2} \frac{H(x)}{S(x)}+e^{2 F_{1}}\left(\frac{d x^{2}}{H(x)}+S(x) d \theta^{2}\right)+e^{2 F_{2}} S(x) \sin ^{2}(d \varphi-W d t)^{2} \\
S(x)=x^{2}+r_{H}^{2} \text { and } H(x)=\frac{\sqrt{S(x)}}{r_{H}+\sqrt{S(x)}}
\end{gathered}
$$

Let's go to Mathematica!

Combination of Einstein Equations

FIDISOL/CADSOL likes to solve system of PDEs where each one has only second derivatives of a single functions. Thus, we have to combine the Einstein equations in the following way,

$$
\begin{aligned}
& -G_{t}^{t}+G_{r}^{r}+G_{\theta}^{\theta}-G_{\varphi}^{\varphi}=0 \\
& G_{t}^{t}+G_{r}^{r}+G_{\theta}^{\theta}-G_{\varphi}^{\varphi}+2 W G_{\varphi}^{t}=0 \\
& -G_{t}^{t}+G_{r}^{r}+G_{\theta}^{\theta}+G_{\varphi}^{\varphi}-2 W G_{\varphi}^{t}=0 \\
& G_{\varphi}^{t}=0
\end{aligned}
$$

Combination of Einstein Equations

FIDISOL/CADSOL likes to solve system of PDEs where each one has only second derivatives of a single functions. Thus, we have to combine the Einstein equations in the following way,

$$
\begin{aligned}
& -G_{t}^{t}+G_{r}^{r}+G_{\theta}^{\theta}-G_{\varphi}^{\varphi}=0 \\
& G_{t}^{t}+G_{r}^{r}+G_{\theta}^{\theta}-G_{\varphi}^{\varphi}+2 W G_{\varphi}^{t}=0 \\
& -G_{t}^{t}+G_{r}^{r}+G_{\theta}^{\theta}+G_{\varphi}^{\varphi}-2 W G_{\varphi}^{t}=0 \\
& G_{\varphi}^{t}=0
\end{aligned}
$$

We can define two other equations that will serve as constrains and will be used to test the numerical accuracy of the solutions,

$$
\begin{aligned}
& G_{r}^{r}-G_{\theta}^{\theta}=0 \\
& G_{r}^{\theta}=0
\end{aligned}
$$

Boundary Conditions Revisited

- Asymptotic boundary conditions: $\lim _{r \rightarrow \infty} F_{i}=\lim _{r \rightarrow \infty} W=0$
- Axis boundary conditions: $\partial_{\theta} F_{i}=\partial_{\theta} W=0$, at $\theta=\{0, \pi\}$
- Equatorial boundary conditions: $\partial_{\theta} F_{i}=\partial_{\theta} W=0$, at $\theta=\frac{\pi}{2}$
- Event Horizon boundary conditions: $\partial_{x} F_{i}=0, W=\Omega_{H}$, at $r=r_{H}$

Radial Coordinate Transformation

Unfortunately, computers do not like infinite, and our radial coordinate x ranges from 0 to ∞. Thus, a compactification is required. Such is done by,

$$
\bar{x}=\frac{x}{1+x}
$$

The transformation implies a substitution of the derivatives of the ansatz functions,

$$
\partial_{x} \mathcal{F} \longrightarrow(1-\bar{x})^{2} \partial_{\bar{x}} \mathcal{F}, \quad \partial_{x x} \mathcal{F} \longrightarrow(1-\bar{x})^{4} \partial_{\bar{x} \bar{x}} \mathcal{F}-2(1-\bar{x})^{3} \partial_{\bar{x}} \mathcal{F}
$$

Newton Residual for the Boundary Conditions

Take as an example the boundary conditions at the horizon,

$$
\partial_{x} F_{i}=0, \quad W=\Omega_{H}, \text { at } r=r_{H}
$$

Those boundaries can be rewritten as,

$$
\partial_{x} F_{i}=0, \quad W-\Omega_{H}=0, \text { at } r=r_{H}
$$

This way, the solver just has to find the roots of those boundaries, which is exactly what FIDISOL/CADSOL is good at!

Run FIDISOL/CADSOL

For Linux/macOS,

1. Compile the file " 2 -CAD.f" with the flags "-c" and "-O2",

- ifort -c -O2 2-CAD.f

2. Compile the file " $v 1$.for" with the same flags,

- ifort -c -O2 v1.for

3. Compile together both outputs of the above codes without flags,

- ifort 2-CAD.o v1.o -o runKerr

4. Run the executable "runKerr".

For Windows,

1. Compile the file " 2 -CAD.f" with the flags "/nolink" and "/O2",

- ifort /nolink /O2 2-CAD.f

2. Compile the file " $v 1$.for" with the same flags,

- ifort /nolink / O2 v1.for

3. Compile together both outputs of the above codes without flags,

- ifort 2-CAD.obj v1.obj /exe runKerr

4. Run the executable "runKerr".

Comparison Exact Kerr with Computed Kerr

Comparison Exact Kerr with Computed Kerr

Numerical Integration of Partial Differential Equations Tutorial on FIDISOL/CADSOL

Jorge Delgado
$22^{\text {nd }}$ and 24th of November 2022

Boson Stars

Boson stars are horizonless, self-gravitating, solitonic-like, scalar field solutions of the Einstein-Klein-Gordon action,

$$
\mathcal{S}=\int d^{4} x \sqrt{-g}\left[\frac{R}{16 \pi}-g^{\mu \nu} \partial_{\mu} \psi^{*} \partial_{\nu} \psi-V\left(|\psi|^{2}\right)\right]
$$

Boson Stars

Boson stars are horizonless, self-gravitating, solitonic-like, scalar field solutions of the Einstein-Klein-Gordon action,

$$
\mathcal{S}=\int d^{4} x \sqrt{-g}\left[\frac{R}{16 \pi}-g^{\mu \nu} \partial_{\mu} \psi^{*} \partial_{\nu} \psi-V\left(|\Psi|^{2}\right)\right]
$$

The potential has the form,

$$
V\left(|\Psi|^{2}\right)=\mu^{2}|\Psi|^{2}+\ldots
$$

$\rightarrow \mu$ is the mass of the field.
\rightarrow ". .." correspond to higher orders terms of the scalar field, e.g. self-interactions.

Differences from the Kerr Problem

Key differences from the Kerr problem,

Differences from the Kerr Problem

Key differences from the Kerr problem,

- Boson stars are horizonless, thus $r_{H}=0$ and is no longer an input parameter of the problem.

Differences from the Kerr Problem

Key differences from the Kerr problem,

- Boson stars are horizonless, thus $r_{H}=0$ and is no longer an input parameter of the problem.
- Presence of a scalar field Ψ. Hence, we have a new ansatz function to compute.

Differences from the Kerr Problem

Key differences from the Kerr problem,

- Boson stars are horizonless, thus $r_{H}=0$ and is no longer an input parameter of the problem.
- Presence of a scalar field Ψ. Hence, we have a new ansatz function to compute.
- Redefinition of $W \rightarrow W / r$.

Differences from the Kerr Problem

Key differences from the Kerr problem,

- Boson stars are horizonless, thus $r_{H}=0$ and is no longer an input parameter of the problem.
- Presence of a scalar field Ψ. Hence, we have a new ansatz function to compute.
- Redefinition of $W \rightarrow W / r$.

These changes, introduces a new ansatz metric,

$$
\begin{gathered}
d s^{2}=-e^{2 F_{0}} d t^{2}+e^{2 F_{1}}\left(d r^{2}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta\left(d \varphi-\frac{W}{r} d t\right)^{2} \\
\Psi=\phi e^{-i(\omega t-m \varphi)}
\end{gathered}
$$

Differences from the Kerr Problem

Key differences from the Kerr problem,

- Boson stars are horizonless, thus $r_{H}=0$ and is no longer an input parameter of the problem.
- Presence of a scalar field Ψ. Hence, we have a new ansatz function to compute.
- Redefinition of $W \rightarrow W / r$.

These changes, introduces a new ansatz metric,

$$
\begin{gathered}
d s^{2}=-e^{2 F_{0}} d t^{2}+e^{2 F_{1}}\left(d r^{2}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta\left(d \varphi-\frac{W}{r} d t\right)^{2} \\
\Psi=\phi e^{-i(\omega t-m \varphi)}
\end{gathered}
$$

$\rightarrow \phi$ is a new ansatz function that depends on $\{r, \theta\}$

Differences from the Kerr Problem

Key differences from the Kerr problem,

- Boson stars are horizonless, thus $r_{H}=0$ and is no longer an input parameter of the problem.
- Presence of a scalar field Ψ. Hence, we have a new ansatz function to compute.
- Redefinition of $W \rightarrow W / r$.

These changes, introduces a new ansatz metric,

$$
\begin{gathered}
d s^{2}=-e^{2 F_{0}} d t^{2}+e^{2 F_{1}}\left(d r^{2}+r^{2} d \theta^{2}\right)+e^{2 F_{2}} r^{2} \sin ^{2} \theta\left(d \varphi-\frac{W}{r} d t\right)^{2} \\
\Psi=\phi e^{-i(\omega t-m \varphi)}
\end{gathered}
$$

$\rightarrow \phi$ is a new ansatz function that depends on $\{r, \theta\}$
$\rightarrow \omega$ is the angular frequency of the scalar field.
$\rightarrow m= \pm\{1,2, \ldots\}$ is the azimuthal harmonic index.

Boundary Conditions for ϕ

- Asymptotic boundary condition: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} \phi=0
$$

Boundary Conditions for ϕ

- Asymptotic boundary condition: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} \phi=0
$$

- Axis boundary condition: Axial symmetry and regularity implies, on the poles, that,

$$
\phi=0, \text { at } \theta=\{0, \pi\}
$$

Boundary Conditions for ϕ

- Asymptotic boundary condition: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} \phi=0
$$

- Axis boundary condition: Axial symmetry and regularity implies, on the poles, that,

$$
\phi=0, \text { at } \theta=\{0, \pi\}
$$

As for the Kerr problem, we have a equatorial symmetry, thus we compute everything on the region $\theta \in\left[0, \frac{\pi}{2}\right]$, and we impose, at the equatorial plane,

$$
\partial_{\theta} \phi=0, \text { at } \theta=\frac{\pi}{2}
$$

Boundary Conditions for ϕ

- Asymptotic boundary condition: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} \phi=0
$$

- Axis boundary condition: Axial symmetry and regularity implies, on the poles, that,

$$
\phi=0, \text { at } \theta=\{0, \pi\}
$$

As for the Kerr problem, we have a equatorial symmetry, thus we compute everything on the region $\theta \in\left[0, \frac{\pi}{2}\right]$, and we impose, at the equatorial plane,

$$
\partial_{\theta} \phi=0, \text { at } \theta=\frac{\pi}{2}
$$

- Origin boundary condition: Performing a power expansion near the origin, $r=0$, for the scalar field, ϕ, we obtain,

$$
\phi=\phi_{0}+\mathcal{O}\left(r^{2}\right)
$$

Boundary Conditions for ϕ

- Asymptotic boundary condition: Asymptotically flatness implies that,

$$
\lim _{r \rightarrow \infty} \phi=0
$$

- Axis boundary condition: Axial symmetry and regularity implies, on the poles, that,

$$
\phi=0, \text { at } \theta=\{0, \pi\}
$$

As for the Kerr problem, we have a equatorial symmetry, thus we compute everything on the region $\theta \in\left[0, \frac{\pi}{2}\right]$, and we impose, at the equatorial plane,

$$
\partial_{\theta} \phi=0, \text { at } \theta=\frac{\pi}{2}
$$

- Origin boundary condition: Performing a power expansion near the origin, $r=0$, for the scalar field, ϕ, we obtain,

$$
\phi=\phi_{0}+\mathcal{O}\left(r^{2}\right)
$$

Therefore, we impose,

$$
\partial_{r} \phi=0, \text { at } r=0
$$

New Equations of Motion

New Equations of Motion

The equations of motion are now composed by the Einstein equations and the Klein-Gordon equation,

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi T_{\mu \nu}, \quad \square \phi=\mu^{2} \phi
$$

New Equations of Motion

The equations of motion are now composed by the Einstein equations and the Klein-Gordon equation,

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi T_{\mu \nu}, \quad \square \phi=\mu^{2} \phi
$$

$\rightarrow \square$ is the d'Alembert operator.

New Equations of Motion

The equations of motion are now composed by the Einstein equations and the Klein-Gordon equation,

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi T_{\mu \nu}, \quad \square \phi=\mu^{2} \phi
$$

$\rightarrow \square$ is the d'Alembert operator.
$\rightarrow T_{\mu \nu}=\partial_{\mu} \Psi^{*} \partial_{\nu} \psi+\partial_{\nu} \Psi^{*} \partial_{\mu} \Psi-g_{\mu \nu}\left[\frac{1}{2} g^{\alpha \beta}\left(\partial_{\alpha} \Psi^{*} \partial_{\beta} \psi+\partial_{\beta} \Psi^{*} \partial_{\alpha} \Psi\right)+\mu^{2} \Psi^{*} \Psi\right]$

New Equations of Motion

The equations of motion are now composed by the Einstein equations and the Klein-Gordon equation,

$$
G_{\mu \nu}=R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi T_{\mu \nu}, \quad \square \phi=\mu^{2} \phi
$$

$\rightarrow \square$ is the d'Alembert operator.

$$
\rightarrow T_{\mu \nu}=\partial_{\mu} \psi^{*} \partial_{\nu} \psi+\partial_{\nu} \psi^{*} \partial_{\mu} \psi-g_{\mu \nu}\left[\frac{1}{2} g^{\alpha \beta}\left(\partial_{\alpha} \psi^{*} \partial_{\beta} \psi+\partial_{\beta} \psi^{*} \partial_{\alpha} \psi\right)+\mu^{2} \psi^{*} \Psi\right]
$$

To perform the numerical integration, it is useful and convenient to use dimensionless variables. such as,

$$
r \rightarrow \mu r, \omega \rightarrow \omega / \mu, \quad \phi \rightarrow \phi / \sqrt{4 \pi}
$$

Let's go our dear friend Mathematica!通 WOLFRAM

Mass and Angular Momentum from Asymptotic Behaviour

Mass and Angular Momentum from Asymptotic Behaviour

The mass and angular momentum of the boson star can be obtained through the asymptotic behaviour of the metric functions,

$$
g_{t t}=-e^{2 F_{0}}+e^{2 F_{2}} W^{2} \sin ^{2} \theta=-1+\frac{2 M}{r}+\ldots, g_{t \varphi}=-e^{2 F_{2}} W r \sin ^{2} \theta=-\frac{2 J}{r} \sin ^{2} \theta+\ldots
$$

Mass and Angular Momentum from Asymptotic Behaviour

The mass and angular momentum of the boson star can be obtained through the asymptotic behaviour of the metric functions,

$$
g_{t t}=-e^{2 F_{0}}+e^{2 F_{2}} W^{2} \sin ^{2} \theta=-1+\frac{2 M}{r}+\ldots, g_{t \varphi}=-e^{2 F_{2}} W r \sin ^{2} \theta=-\frac{2 J}{r} \sin ^{2} \theta+\ldots
$$

Asymptotically, we have,

$$
F_{0}=-\frac{M}{r}+\mathcal{O}\left(\frac{1}{r^{2}}\right), \quad W=\frac{2 J}{r^{2}}+\mathcal{O}\left(\frac{1}{r^{3}}\right)
$$

With a simple linearization in $1 / r$ and $1 / r^{2}$, we obtain the mass and angular momentum, respectively.

Mass and Angular Momentum from the Komar Integrals

Mass and Angular Momentum from the Komar Integrals

Komar integrals are defined as,

$$
M=-2 \int_{\Sigma} d S_{\mu}\left(T_{\nu}^{\mu} t^{\nu}-\frac{1}{2} T t^{\mu}\right), \quad J=\int_{\Sigma} d S_{\mu}\left(T_{\nu}^{\mu} \varphi^{\nu}-\frac{1}{2} T \varphi^{\mu}\right)
$$

$\rightarrow \Sigma$ is a spacelike surface bounded by a 2 -sphere at spatial infinity.
$\rightarrow t^{\mu}$ and φ^{μ} are the timelike and rotating Killing vectors, respectively.

Mass and Angular Momentum from the Komar Integrals

Komar integrals are defined as,

$$
M=-2 \int_{\Sigma} d S_{\mu}\left(T_{\nu}^{\mu} t^{\nu}-\frac{1}{2} T t^{\mu}\right), \quad J=\int_{\Sigma} d S_{\mu}\left(T_{\nu}^{\mu} \varphi^{\nu}-\frac{1}{2} T \varphi^{\mu}\right)
$$

$\rightarrow \Sigma$ is a spacelike surface bounded by a 2 -sphere at spatial infinity.
$\rightarrow t^{\mu}$ and φ^{μ} are the timelike and rotating Killing vectors, respectively.
Expanding the integrals,

$$
\begin{gathered}
M=-\int_{0}^{\infty} d r \int_{0}^{\pi} d \theta r^{2} \sin \theta e^{F_{0}+2 F_{1}+F_{2}}\left(T_{t}^{t}-\frac{1}{2} T\right) \\
J=\int_{0}^{\infty} d r \int_{0}^{\pi} d \theta r^{2} \sin \theta e^{F_{0}+2 F_{1}+F_{2}} T_{\varphi}^{t}
\end{gathered}
$$

Compactness

Compactness

Boson stars do not have a well-defined surface, since they decays exponentially.

Compactness

Boson stars do not have a well-defined surface, since they decays exponentially. Nonetheless, it is possible to define a "surface", by performing the following steps,

Compactness

Boson stars do not have a well-defined surface, since they decays exponentially. Nonetheless, it is possible to define a "surface", by performing the following steps,

1. Compute the perimeteral radius, R_{99}, which contains 99% of the total mass, M_{99}.

Compactness

Boson stars do not have a well-defined surface, since they decays exponentially. Nonetheless, it is possible to define a "surface", by performing the following steps,

1. Compute the perimeteral radius, R_{99}, which contains 99% of the total mass, M_{99}.

Perimeteral radius is a radial coordinate R, such that a circumference along the equatorial plane has perimeter $2 \pi R$, and relates to r by $R=e^{F_{2}} r$.

Compactness

Boson stars do not have a well-defined surface, since they decays exponentially. Nonetheless, it is possible to define a "surface", by performing the following steps,

1. Compute the perimeteral radius, R_{99}, which contains 99% of the total mass, M_{99}.

Perimeteral radius is a radial coordinate R, such that a circumference along the equatorial plane has perimeter $2 \pi R$, and relates to r by $R=e^{F_{2} r}$.
2. Define the inverse compactness as the ratio between R_{99} and the Schwarzschild radius associated with a 99% of the boson star mass, $R_{\text {Schw }}=2 M_{99}$

$$
\text { Compactness }^{-1}=\frac{R_{99}}{2 M_{99}}
$$

Ergoregions

Ergoregions are regions where the norm of $\xi=\partial_{t}$ becomes positive, and are bounded by surface where $\xi^{2}=0$.

Ergoregions

Ergoregions are regions where the norm of $\xi=\partial_{t}$ becomes positive, and are bounded by surface where $\xi^{2}=0$.

To verify that a boson star has ergoregions, we just verify the existence of zeros for ξ^{2},

$$
\xi^{2}=g_{t t}=-e^{2 F_{0}}+W^{2} e^{2 F_{2}} \sin ^{2} \theta=0
$$

Ergoregions

Ergoregions are regions where the norm of $\xi=\partial_{t}$ becomes positive, and are bounded by surface where $\xi^{2}=0$.

To verify that a boson star has ergoregions, we just verify the existence of zeros for ξ^{2},

$$
\xi^{2}=g_{t t}=-e^{2 F_{0}}+W^{2} e^{2 F_{2}} \sin ^{2} \theta=0
$$

Ergoregions

Ergoregions are regions where the norm of $\xi=\partial_{t}$ becomes positive, and are bounded by surface where $\xi^{2}=0$.

To verify that a boson star has ergoregions, we just verify the existence of zeros for ξ^{2},

$$
\xi^{2}=g_{t t}=-e^{2 F_{0}}+W^{2} e^{2 F_{2}} \sin ^{2} \theta=0
$$

Light rings

Light rings

1. Start with the effective Lagrangian for geodesic motion of a massless test particle, on the equatorial plane,

$$
\mathcal{L}=e^{2 F_{1}} \dot{r}^{2}+e^{2 F_{2}} r^{2}\left(\dot{\varphi}-\frac{W}{r} \dot{t}\right)^{2}-e^{2 F_{0}} \dot{t}^{2}=0
$$

Light rings

1. Start with the effective Lagrangian for geodesic motion of a massless test particle, on the equatorial plane,

$$
\mathcal{L}=e^{2 F_{1}} \dot{r}^{2}+e^{2 F_{2}} r^{2}\left(\dot{\varphi}-\frac{W}{r} \dot{t}\right)^{2}-e^{2 F_{0}} \dot{t}^{2}=0
$$

2. Use the isometries of the problem to write \dot{t} and $\dot{\varphi}$ in terms of the energy E and angular momentum L of the particle,

$$
\begin{aligned}
& E=\left(e^{2 F_{0}}-e^{2 F_{2}} W^{2}\right) \dot{t}+e^{2 F_{2}} r W \dot{\varphi} \\
& L=e^{2 F_{2}} r^{2}\left(\dot{\varphi}-\frac{W}{r} \dot{t}\right)
\end{aligned}
$$

Light rings

1. Start with the effective Lagrangian for geodesic motion of a massless test particle, on the equatorial plane,

$$
\mathcal{L}=e^{2 F_{1}} \dot{r}^{2}+e^{2 F_{2}} r^{2}\left(\dot{\varphi}-\frac{W}{r} \dot{t}\right)^{2}-e^{2 F_{0}} \dot{t}^{2}=0
$$

2. Use the isometries of the problem to write \dot{t} and $\dot{\varphi}$ in terms of the energy E and angular momentum L of the particle,

$$
\begin{aligned}
& E=\left(e^{2 F_{0}}-e^{2 F_{2}} W^{2}\right) \dot{t}+e^{2 F_{2}} r W \dot{\varphi} \\
& L=e^{2 F_{2}} r^{2}\left(\dot{\varphi}-\frac{W}{r} \dot{t}\right)
\end{aligned}
$$

3. Rewrite the Lagrangian and obtain an equation for \dot{r}^{2},

$$
\dot{r}^{2}=V(r)=e^{2 F_{1}}\left[e^{-2 F_{0}}\left(E-L \frac{W}{r}\right)^{2}-e^{-2 F_{2}} \frac{L^{2}}{r^{2}}\right]
$$

4. Compute the zeros of both the potential and its first derivative, $V(r)=V^{\prime}(r)=0$.

Light Rings

4. Compute the zeros of both the potential and its first derivative, $V(r)=V^{\prime}(r)=0$.
$\rightarrow V(r)=0$ will give two algebraic equations for the impact parameter of the massless particle, $b_{ \pm}=L_{ \pm} / E_{ \pm} . \pm$correspond to co- and counter-rotating orbits.

Light Rings

4. Compute the zeros of both the potential and its first derivative, $V(r)=V^{\prime}(r)=0$.
$\rightarrow V(r)=0$ will give two algebraic equations for the impact parameter of the massless particle, $b_{ \pm}=L_{ \pm} / E_{ \pm} . \pm$correspond to co- and counter-rotating orbits.
$\rightarrow V^{\prime}(r)=0$, together with the impact parameters, will give the radial coordinate for the co- and counter-rotating light rings.

Light Rings

4. Compute the zeros of both the potential and its first derivative, $V(r)=V^{\prime}(r)=0$.
$\rightarrow V(r)=0$ will give two algebraic equations for the impact parameter of the massless particle, $b_{ \pm}=L_{ \pm} / E_{ \pm} . \pm$correspond to co- and counter-rotating orbits.
$\rightarrow V^{\prime}(r)=0$, together with the impact parameters, will give the radial coordinate for the co- and counter-rotating light rings.
In the end, we just have to find the roots of the following equations,

$$
e^{F_{0}}\left[1-r\left(F_{0}{ }^{\prime}-F_{2}^{\prime}\right)\right] \pm e^{F_{2}}\left(W-r W^{\prime}\right)=0
$$

Energy Conditions

For any timelike vector field X^{μ}, we have,

- Weak Energy Condition: $T_{\mu \nu} X^{\mu} X^{\nu} \geq 0$

Energy Conditions

For any timelike vector field X^{μ}, we have,

- Weak Energy Condition: $T_{\mu \nu} X^{\mu} X^{\nu} \geq 0$
\rightarrow The energy density measured by any timelike observer must be non-negative

Energy Conditions

For any timelike vector field X^{μ}, we have,

- Weak Energy Condition: $T_{\mu \nu} X^{\mu} X^{\nu} \geq 0$
\rightarrow The energy density measured by any timelike observer must be non-negative For a Zero Angular Momentum Observer, this conditions translates to,

$$
-T_{t}^{t}-T_{\varphi}^{t} \frac{g^{\varphi t}}{g^{t t}} \geq 0
$$

Energy Conditions

For any timelike vector field X^{μ}, we have,

- Weak Energy Condition: $T_{\mu \nu} X^{\mu} X^{\nu} \geq 0$
\rightarrow The energy density measured by any timelike observer must be non-negative For a Zero Angular Momentum Observer, this conditions translates to,

$$
-T_{t}^{t}-T_{\varphi}^{t} \frac{g^{\varphi t}}{g^{t t}} \geq 0
$$

- Strong Energy Condition: $\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) X^{\mu} X^{\nu} \geq 0$

Energy Conditions

For any timelike vector field X^{μ}, we have,

- Weak Energy Condition: $T_{\mu \nu} X^{\mu} X^{\nu} \geq 0$
\rightarrow The energy density measured by any timelike observer must be non-negative For a Zero Angular Momentum Observer, this conditions translates to,

$$
-T_{t}^{t}-T_{\varphi}^{t} \frac{g^{\varphi t}}{g^{t t}} \geq 0
$$

- Strong Energy Condition: $\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) X^{\mu} X^{\nu} \geq 0$
\rightarrow Matter must gravitate towards matter.

Energy Conditions

For any timelike vector field X^{μ}, we have,

- Weak Energy Condition: $T_{\mu \nu} X^{\mu} X^{\nu} \geq 0$
\rightarrow The energy density measured by any timelike observer must be non-negative For a Zero Angular Momentum Observer, this conditions translates to,

$$
-T_{t}^{t}-T_{\varphi}^{t} \frac{g^{\varphi t}}{g^{t t}} \geq 0
$$

- Strong Energy Condition: $\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T\right) X^{\mu} X^{\nu} \geq 0$
\rightarrow Matter must gravitate towards matter.
For a Zero Angular Momentum Observer, this conditions translates to,

$$
-\left(T_{t}^{t}-\frac{1}{2} T\right)-T_{\varphi}^{t} \frac{g^{\varphi t}}{g^{t t}} \geq 0
$$

