Data for the initial guess - Kerr

Clear Variables

This command clears every variable that is in memory. It will clear variables in all open notebooks.

```
In[॰]:= ClearAll["Global`*"]
```


Choice of the input parameters

$\ln [0]:=r H=0.1 ;$
$\Omega \mathrm{H}=0.96$;

Relation to the analytic Kerr Metric

From Appendix A in [Class. Quant. Grav., vol. 32, no. 14, p. 144001, 2015.] and Appendix A in the thesis, http://hdl.handle.net/10773/17984, we can compute the physical quantities of a Kerr black hole with the above input parameters
$\ln [\cdot]:=\mathbf{x}=\mathbf{r H} \mathbf{\Omega} \mathbf{H} ;$
$\ln [\cdot]:=u \operatorname{low}[x]:=\frac{1}{3}\left(2+\frac{\sqrt{3+x^{2}}}{x} \cos \left[\frac{1}{3}\left(4 \pi+\operatorname{ArcCos}\left[\frac{x\left(18+x^{2}\right)}{\left(3+x^{2}\right)^{3 / 2}}\right]\right)\right]\right)$
$\operatorname{In}[\cdot]:=\operatorname{uhigh}[x]]:=\frac{1}{3}\left(2+\frac{\sqrt{3+x^{2}}}{x} \cos \left[\frac{1}{3}\left(2 \pi+\operatorname{ArcCos}\left[\frac{x\left(18+x^{2}\right)}{\left(3+x^{2}\right)^{3 / 2}}\right]\right)\right]\right)$
Let's consider the solution on the lower branch.
$\ln [0]:=\mathbf{u}=\mathbf{u l o w}[\mathbf{x}]$
out[0] $=$
-0.00966845
$\ln [\cdot]:=\mathbf{c t}=\mathbf{r H u}$;
$\ln [\cdot]:=M=\frac{1}{2}(r \mathrm{H}-2 \mathrm{ct})$;
$J=\frac{1}{2} \sqrt{c t(c t-r H)}(r H-2 c t)$;
$A H=4 \pi(r H-c t)(r H-2 c t) ;$
$\mathrm{TH}=\frac{\mathrm{rH}}{4 \pi(\mathrm{rH}-\mathrm{ct})(\mathrm{rH}-2 \mathrm{ct})}$;
$\ln \left[\sigma^{\prime}\right]:=\operatorname{Print}[" M a s s=$ ", M, "\n", "Angular Momentum = ", J,
"\n", "Horizon Area = ", AH, "\n", "Hawking Temperature = ", TH]
Mass $=0.0509668$
Angular Momentum $=0.000503565$
Horizon Area = 0.129332
Hawking Temperature = 0.773203

Grid for the initial solution

xx is the the radial coordinate \bar{x} on the notes. x is the radial coordinate x on the notes.
$\ln [0]:=\mathbf{n x}=\mathbf{2 5 1 ;}$
ny = 33;
$\ln [\varnothing]:=x x=\operatorname{Table}\left[i,\left\{i, 0,1, \frac{1}{(n x-1)}\right\}\right] / / N$;
$y=\operatorname{Table}\left[i,\left\{i, 0, \frac{\pi}{2}, \frac{\pi / 2}{(n y-1)}\right\}\right] / / N$;
$\ln [\sigma]:=\quad \mathbf{x}=$ Quiet[xx/(1-xx)] //N;
$x \llbracket n x \rrbracket=10^{12} ;$
Since when $x x=1-->x->\infty$, we change the last value of the array x, to be a very large number

Computation of the ansatz functions

All expression on the Appendices are written in terms of the original radial coordinate r. So we need to convert x back to r.
$\ln [\cdot]:=\quad r=\sqrt{\mathbf{x}^{2}+\mathrm{rH}^{2}}$;

```
In[\rho]:= F1 = Table[\frac{1}{2}}\operatorname{Log}[(1-\frac{ct}{r\llbracketj\rrbracket}\mp@subsup{)}{}{2}+\operatorname{ct (ct-rH)}\frac{\operatorname{Cos}[y\llbracketi\rrbracket\mp@subsup{]}{}{2}}{r\llbracketj\mp@subsup{\rrbracket}{}{2}}],{i,1,ny},{j,1,nx}]
F2 =
    Table[\frac{1}{2}\operatorname{Log}[\operatorname{Exp[-2 F1\llbracketi, j\rrbracket] (( }1-\frac{ct}{r\llbracketj\rrbracket}}\mp@subsup{)}{}{2}+\frac{ct(ct-rH)}{r\llbracketj\mp@subsup{\rrbracket}{}{2}}\mp@subsup{)}{}{2}+ct(rH-ct)(1-\frac{rH}{r\llbracketj\rrbracket})\frac{\operatorname{Sin}[y\llbracketi\rrbracket\mp@subsup{]}{}{2}}{r\llbracketj\mp@subsup{\rrbracket}{}{2}})]
    {i, 1, ny}, {j, 1, nx}];
F0 = - F2;
W =
    Table[Exp[-2 (F1\llbracketi, j\rrbracket+F2\llbracketi,j\rrbracket)] \sqrt{}{ct(ct-rH)}(rH-2ct) \frac{(1-\frac{ct}{r\llbracketj\rrbracket})}{r\llbracketj\mp@subsup{\rrbracket}{}{3}},{i,1,ny},{j,1,nx}];
    Functions = Table[0,{i, 1, 4 nx ny + 1}];
    F1Reshape = ArrayReshape[F1,{nx ny}];
    F2Reshape = ArrayReshape[F2, {nx ny}];
    F0Reshape = ArrayReshape[F0,{nx ny}];
    WReshape = ArrayReshape[W,{nx ny}];
    For[i=1, i \leq 4 nx ny, i++,
    If[Mod[i, 4] == 1,
        Functions\llbracketi\rrbracket= F1Reshape\llbracketIntegerPart[(i - 1)/4] + 1\rrbracket];
    If[Mod[i, 4] == 2,
        Functions\llbracketi\rrbracket = F2Reshape\llbracketIntegerPart[(i-1)/4] + 1\rrbracket];
    If[Mod[i, 4] == 3,
        Functions\llbracketi\rrbracket= F0Reshape\llbracketIntegerPart[(i-1)/4] + 1\rrbracket];
    If[Mod[i, 4] == 0,
        Functions[i\rrbracket]= WReshape\llbracketIntegerPart[(i-1)/4] + 1\];
    ]
In[\sigma]:= FunctionsReshape = ArrayReshape[Functions, {nx ny, 4}];
In[\sigma]:= xFunction = x;
ln[\odot]:= For[i=1, i < ny, i++,
    xFunction = Join[xFunction, x]]
In[-]:= yFunction = Table[0,{i, 1, nx ny}];
In[\sigma ]:= For[i=1, i \leqnx ny, i++,
    yFunction\llbracketi\rrbracket= y[IntegerPart[(i-1)/nx] + 1\]
```

In［－］：＝FunctionsReshapeFinal＝Transpose［\｛xFunction，yFunction，FunctionsReshape【All，1】， FunctionsReshape【All，2】，FunctionsReshape【All，3】，FunctionsReshape【All，4】\}];

Export to files

Setting the directory to where we export the files
SetDirectory［NotebookDirectory［］］
．．．SetDirectory：File specification／BackUp
／home／jorge／MEGA／Tese／Notes／Tutorial＿CADSOL＿Kerr／Workshop＿COGWDL／Kerr／is not a string of one or more characters．

Out［0 $1=$
SetDirectory［
／BackUp／home／jorge／MEGA／Tese／Notes／Tutorial＿CADSOL＿Kerr／Workshop＿COGWDL／Kerrl］
$\ln [\cdot]:=$ Export［＂gridx．dat＂，x，＂Table＂］
Export［＂gridy．dat＂，y，＂Table＂］
Out［0］$=$
gridx．dat
out［0］$=$
gridy．dat

In［o］：＝Export［＂functf．dat＂，Functions，＂Table＂］
Export［＂funct．dat＂，FunctionsReshapeFinal，＂Table＂］
out［0 ］＝
functf．dat
out $[0]=$
funct．dat
After doing this，remember to call the subroutine＂write＂when running FIDISOL／CADSOL for the first time，so the subroutine can translate the files exported from MATHEMATICA to something Fortran likes to read．

