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Introduction

A black hole: the object formed, e.g., by the gravitational collapse
of a large star.

In classical physics nothing comes out of a black hole. Even light
cannot escape from it.

Hawking discovered more than 50 years ago that in quantum field
theory in curved spacetime a black hole of mass M radiates like a
black body of temperature, called the Hawking temperature TH,

kBTH =
ℏc3

8πGM
kB = 1.38× 10−23 J/K: Boltzmann constant
ℏ = 1.054× 10−34 J·sec: Planck constant
G = 6.67× 10−11m3/kg·sec−2: Newton constant
c = 3.00× 108m/sec: Light Speed constant
For a spherically symmetric black hole with M = 30M⊙
(M⊙ = 1.99× 1030kg): TH = 6.17× 10−8K.
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Hawking’s original derivation is difficult

Hawking derived his radiation for a spherically symmetric black
hole.

It involves sophisticated use of mathematics in quantum field
theory in curved spacetime and unreasonable idealization.

The spacetime is time-dependent:

almost flat spacetime → black-hole spacetime

difficult to treat exactly

Question: Is there a simple model allowing exact calculations but
still capturing the essence of the Hawking effect?
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Perfectly reflecting collapsing spherical mirror

Quantum field: massless scalar (i.e., spin-0) field

• Perfectly reflecting spherical mirror of mass M at
r = r0 > 2GM/c2. (r = 2GM/c2 would be the black-hole
horizon after the collapsing.)

• The scalar field in the vacuum state without any radiation
coming in or going out (the Boulware vacuum)

• The mirror starts collapsing at t = 0, in a spherically
symmetric way, and disappears below r = 2GM/c2.
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Perfectly reflecting collapsing spherical mirror

• The spacetime outside the mirror is a static spherically
symmetric spacetime with black hole of mass M
(Schwarzschild spacetime) throughout the mirror-collapsing
process because of Birkoff’s Theorem.

• The problem reduces to finding out the evolution of the state
with a reflecting boundary at r = R(t) (radius of the mirror)
with the initial condition at t = 0 being the Boulware vacuum,
which is the no-particle state.

Still complicated mainly due to scattering by the spacetime
curvature.

In two dimensions, there is no scattering for massless scalar
particles in any spacetime.

We study a two-dimensional analogue of QFT of massless scalar
field bounded by the perfectly reflecting collapsing mirror, which is
a point, with the state of the scalar field which being the Boulware
vacuum state at t = 0.
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The plan

(1) Quick review of (2D) Schwarzschild spacetime in
Kruskal-Szekeres coordinates

(2) Massless scalar field in two dimensions: ingoing and
outgoing fields

(3) Renormalized stress-energy tensor

(4) Renormalized stress-energy tensor in the Boulware and
Hartle-Hawking vacua

(5) Renormalized stress-energy tensor in the perfectly
reflecting collapsing mirror: energy flux consistent with a
thermal bath of temperature κ/2π, κ = 1/4M
(G = c = ℏ = TB = 1), is seen to go out to infinity.

Apology: It will NOT be shown that the energy distribution is
thermal. It will be shown only that the total flux equals that of a
thermal bath of temperature κ/2π.
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(2D) Schwarzschild spacetime

U : const. on the out-going light ray: describes the out-going field
V : const. on the in-going light ray: describes the in-going field.

dτ2 =
32M3

r
e−r/2MdUdV , UV = −r − 2M

2M
er/2M , −V/U = et/2M .

Figure: The Schwarzschild black hole in Kruskal-Szekeres coordinates U
and V . the red curves: constant-r hypersurfaces; the blue lines:
constant-t hypersurfaces. The singularities: UV = 1 (r = 0).
Horizons (r = 2M) are at U = 0 and V = 0.
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(2D) Schwarzschild spacetime

black-hole region: U, V > 0.

U

BH

V

outside BH

horizon

u→+∞

u→−∞

v→−∞

v→+∞

Outside region: U < 0,

V > 0. Let U = −e−κu ,

V = eκv (κ = 1/4M).

u = t− r∗ = t− r − 2M log
r − 2M

2M
,

v = t+ r∗ = t+ r + 2M log
r − 2M

2M
.

dτ2 = C(u, v)dudv, C(u, v) = 1− 2M/r .

Eddington-Finkelstein
coordinates.
The variable u plays the role of
time for the out-going field.
As u→ ∞ (infinite future), U → 0 (future horizon).
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Massless scalar field

dτ2 = G(u, v)dudv

The field equation for the massless scalar field ϕ(u, v):

∇µ∇µϕ = 0 ⇒ ∂u∂vϕ = 0 , for any G(u, v).

General solution: ϕ(u, v) = ϕ(o)(u) + ϕ(i)(v).
ϕ(o)(u) : the outgoing field (u = t− r∗)
ϕ(i)(v) : the ingoing field (v = t+ r∗).

We mainly discuss only the outgoing field: f(u) is an outgoing
wave solution for any f .
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Massless scalar field in Schwarzschild spacetime

The quantized outgoing field

ϕ̂(o)(u) =

∫ ∞
0

dω√
4πω

[
â(ω)e−iωu + â†(ω)eiωu

]
,

[â(ω), â†(ω′)] = δ(ω − ω′) .

e−iωu = e−iωteiωr∗ = e−iωt[(r − 2M)/2M ]iω/2Meiωr

The Boulware vacuum |0B⟩: â(ω)|0B⟩ = 0 for all ω.
No-particle state with respect to the usual energy

U V

U = −e−κu, κ = 1/4M (surface gravity).

U → 0− as u→ ∞.
Near U = 0,
e−iωu oscillates infinitely many times.
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Massless scalar field in Schwarzschild spacetime

Global Schwarzschild spacetime: dτ2 = K(U, V )dUdV .
(U = −e−κu, V = eκv)

∂U∂V ϕ = 0 ⇒ ϕ(U, V ) = ϕ(O)(U) + ϕ(I)(V ) .

U V

The quantized outgoing field

ϕ̂(O)(U) =

∫ ∞
0

dω√
4πω

[
Â(ω)e−iωU + Â†(ω)eiωU

]
[Â(ω), Â†(ω′)] = δ(ω − ω′) .

The Hartle-Hawking vacuum |0HH⟩:
Â(ω)|0HH⟩ = 0 for all ω.

We’ll find that |0HH⟩ contains energy fluxes consistent with a
thermal bath of temperature κ/2π relative to |0B⟩ by studying the
(renormalized) stress-energy tensor.
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The stress-energy tensor

For the massless scalar field

Tµν = (∇µϕ)(∇νϕ)−
1

2
gµν(∇αϕ)(∇αϕ) .

For the spacetime with dτ2 = C(u, v)dudv,

Tuu = (∂uϕ)
2 = (∂uϕ

(o)(u))2 , Tvv = (∂vϕ)
2 = (∂vϕ

(i)(v))2 , Tuv = 0 .

The trace: gµνTµν = 2guvTuv = 0. A consequence of the scale
invariance

Tuu: the outgoing energy flux
Tvv: the ingoing energy flux
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The stress-energy tensor

ϕ̂(o)(u) =

∫ ∞
0

dω√
4πω

[â(ω)e−iωu + â†(ω)eiωu] ,

[â(ω), â†(ω′)] = δ(ω − ω′) .

Assume that the state |ψ⟩ satisfies ⟨ψ|â(ω)â(ω′)|ψ⟩ = 0.

⟨ψ|Tuu|ψ⟩ =
∫ ∞
0

dω√
4πω

∫ ∞
0

dω′√
4πω′

ωω′

× [⟨ψ|â†(ω)â(ω′)|ψ⟩ei(ω−ω′)u + ⟨ψ|â(ω)â†(ω′)|ψ⟩e−i(ω−ω′)u]

=

∫ ∞
0

dω√
4πω

∫ ∞
0

dω′√
4πω′

2ωω′⟨ψ|â†(ω)â(ω′)|ψ⟩ei(ω−ω′)u

+
1

4π

∫ ∞
0

ω dω .
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The renormalized stress-energy tensor

For (two-dimensional) Minkowski spacetime dτ2 = dUdV ,
U = T −X, V = T +X.
We renormalized the stress-energy tensor by normal ordering
Â(ω)Â†(ω) → Â†(ω)Â(ω):

⟨ψ|T ren
UU |ψ⟩ =

∫ ∞
0

dω√
4πω

∫ ∞
0

dω′√
4πω′

2ωω′⟨ψ|Â†(ω)Â(ω′)|ψ⟩ei(ω−ω′)U .

Minkowski vacuum |0M⟩: Â(ω)|0M⟩ = 0 ⇒ ⟨0M|T ren
UU |0M⟩ = 0.

Thermal state |κ⟩ with temperature κ/2π (eℏω/kB(κ/2π) → e2πω/κ):
⟨κ|Â†(ω)Â(ω′)|κ⟩ = (e2πω/κ − 1)−1δ(ω − ω′):

⟨κ|T ren
UU |κ⟩ =

∫ ∞
0

dω

4πω

2ω2

e2πω/κ − 1
=

κ2

48π
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Renormalized stress-energy tensor

For general spacetime with dτ2 = C(u, v)dudv:

ϕ̂(u) =

∫ ∞
0

dω√
4πω

[â(ω)e−iωu + â†(ω)eiωu] .

The conformal vacuum |0C⟩ for conformal factor C(u, v) is defined

by â(ω)|0C⟩ = 0 for all ω .

It turns out to be inconsistent to let ⟨0C |T ren
uu |0C⟩ = 0 (by normal

ordering). We use “point-splitting” to define ⟨0C |T ren
uu |0C⟩.

⟨0C |[∂uϕ̂(u1)][∂uϕ̂(u2)]|0C⟩ = − 1

4π(u1 − u2)2
.

We subtract the flat-space equivalent and take the limit
u1, u2 → u in order to define ⟨0C |T ren

uu |0C⟩.
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Renormalized stress-energy tensor

dτ2 = C(u, v)dudv

Define on the line with v fixed,

s(u, v) =

∫ u

u0

C(ũ, v)dũ ⇒ ∂s(u, v)

∂u
= C(u, v) .(affine parameter)

The flat-space equivalent on the v=constant line turns out to be

⟨0|Ts1s2 |0⟩ = ⟨0|∂sϕ̂(u1)∂sϕ̂(u2)|0⟩ = − 1

4π[s(u1, v)− s(u2, v)]2
.

⟨0|[∂uϕ̂(u1)][∂uϕ̂(u2)]|0⟩ = −(∂s/∂u|u=u1)(∂s/∂u|u=u2)

4π[s(u1, v)− s(u2, v)]2
.

⟨0C |T ren
uu |0C⟩ ←−

u1,u2→u − 1

4π(u1 − u2)2
+

(∂s/∂u|u=u1)(∂s/∂u|u=u2)

4π[s(u1, v)− s(u2, v)]2
.
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Renormalized stress-energy tensor

Then we find

⟨0C |T ren
uu |0C⟩ = − 1

12π
C1/2∂2uC

−1/2 ,

⟨0C |T ren
vv |0C⟩ = − 1

12π
C1/2∂2vC

−1/2 .

Then, it would be inconsistent with ∇µT ren
µν = 0 if

⟨0C |T ren
uv |0C⟩ = 0.

The unique solution is

T ren
uv =

1

12π

[
C1/2∂u∂vC

−1/2 − C(∂uC
−1/2)(∂vC

−1/2)
]
.

gµνT ren
µν = C−1Tuv =

1

12π
R (trace anomaly)
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The Boulware vacuum

dτ2 = C(u, v)dudv, C = 1− 2M/r,
(v − u)/2 = r + 2M log[(r − 2M)/2M ].

ϕ̂(u) =

∫ ∞
0

dω√
4πω

[â(ω)e−iωu + â†(ω)e−iωu] ,

â(ω)|0B⟩ = 0 .

|0B⟩ : Boulware vacuum.

⟨0B|Tuu|0B⟩ = ⟨0B|Tvv|0B⟩ =
1

24π

(
−M
r3

+
3M2

2r4

)
=

{
− κ2

48π at r = 2M ,

0 at r = ∞.
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General vacuum for the outgoing field

Let U = f(u) (U = −e−κu is a special case) and

ϕ̂(U) =
∫

dω√
4πω

[Â(ω)e−iωU + Â†(ω)eiωU ] ,

and define |0f ⟩ by Â(ω)|0f ⟩ = 0 for all ω.

dτ2 = C(u, v)dudv = C(u, v)[f ′(u)]−1dUdv: |0f ⟩ is the conformal
vacuum for conformal factor C(u, v)[f ′(u)]−1. We can find
⟨0f |T ren

UU |0f ⟩ by using the general formula. By multiplying that by
(∂U/∂u)2 we find

⟨0f |T ren
uu |0f ⟩ = ⟨T ren

uu ⟩B +
1

48π

{
3
f ′′′(u)

f ′(u)
− 2

[
f ′′(u)

f ′(u)

]2}
.
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The Hartle-Hawking vacuum

⟨0f |T ren
uu |0f ⟩ = ⟨T ren

uu ⟩B +
1

48π

{
3
f ′′′(u)

f ′(u)
− 2

[
f ′′(u)

f ′(u)

]2}
.

For the Hartle-Hawking vacuum U = f(u) = −e−κu.

⟨T ren
uu ⟩HH =

1

24π

(
−M
r3

+
3M2

2r4

)
+

κ2

48π
, κ = 1/4M .

Similarly,

⟨0HHT
ren
vv |0HH⟩ =

1

24π

(
−M
r3

+
3M2

2r4

)
+

κ2

48π
.

In the Hartle-Hawking vacuum, there are ingoing and outgoing
energy fluxes consistent with the thermal fluxes with temperature
κ/2π.
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(2D) collapsing mirror

What happens if there is a static mirror reflecting the field at
r0 > 2M , the state being the Boulware vacuum, and if it starts
collapsing at t = 0 and falls into the black hole?

21/26



2D collapsing mirror

The trajectory of the “mirror”: r = r0 (UV = −1 or V = −1/U)
before (U, V ) = (−1, 1) (or (u, v) = (0, 0)).
The Boulware vacuum is maintained by the static mirror.

U V

horizon

u→+∞

u→−∞

v→−∞

v→+∞

|0B⟩
?

|0HH⟩

The trajectory
of the mirror is V = F (U)
with F (0) = F ′(0) > 0
(guaranteeing that
the mirror falls into the black
hole) after (U, V ) = (−1, 1)
(or (u, v) = (0, 0).
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2D collapsing mirror

The in-going state |0B⟩ at A:

ϕ̂(v) =

∫ ∞
0

dω√
4πω

[â(ω)e−iωv + â†(ω)eiωv] , â(ω)|0B⟩ = 0 .

U

B

V

horizon

u→+∞

u→−∞

v→−∞

v→+∞

A

The
variables u and v are mapped
to each other at the mirror as

V = F (U) ⇒ eκv = F (−e−κu)

⇒ v = f(u) =
1

κ
logF (−e−κu) .

The outgoing
field at B is given by replacing
v by f(u) and the state |0f ⟩
is still defined by â(ω)|0f ⟩ = 0.
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2D collapsing mirror

For u > 0, the state for the out-going field |0f ⟩ satisfies
â(ω)|0f ⟩ = 0, where

ϕ̂(u) =

∫ ∞
0

dω√
4πω

[e−iωU â(ω) + e−iωU â†(ω)eiωU ] ,

U = f(u) =
1

κ
log(F (U)) , U = −e−κu .

⟨0f |T ren
uu |0f ⟩ = ⟨0B|T ren

uu |0B⟩+
1

48π

{
3
f ′′′(u)

f ′(u)
− 2

[
f ′′(u)

f ′(u)

]2}
.

dU

du
= κe−κu = −κU .

f ′(u) = −U F
′(U)

F (U)
≈ F ′(0)

F (0)
e−κu for large u .
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2D collapsing mirror

⟨0f |T ren
uu |0f ⟩ = ⟨0B|T ren

uu |0B⟩+
1

48π

{
3
f ′′′(u)

f ′(u)
− 2

[
f ′′(u)

f ′(u)

]2}
.

f ′(u) = −U F
′(U)

F (U)
≈ F ′(0)

F (0)
e−κu for large u .

f ′′(u) ≈ −κF
′(0)

F (0)
e−κu ,

f ′′′(u) ≈ κ2
F ′(0)

F (0)
e−κu .

Hence ⟨0f |T ren
uu |0f ⟩ ≈ ⟨0B|T ren

uu |0B⟩+
κ2

48π
for large u .

Consistent with thermal flux of temperature κ/2π.
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Summary

By considering a collapsing mirror in two-dimensional
Schwarzschild spacetime, we have a simple model of the Hawking
radiation with the out-going energy flux approaching to κ2/48π
with κ = 1/4M , which is the energy flux for a thermal bath of
temperature κ/2π. The transition time is ∼ 4M (≈ 6× 10−4sec
for M = 30M⊙).

The energy flux going out to infinity is κ2/48π and that going into
the horizon is −κ2/48π (same as in the Boulware vacuum). The
collapsing mirror has little to do with the late-time Hawking
radiation as far as the energy balance is concerned.

It will be interesting to examine the quantum state in more detail
to find exactly what happens in the transition period.
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