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Disclaimer:

‘This talk has no connection whatsoever to the 'Hypershadow'
character from the Sonic the Hedgehog franchise. Any
resemblance is purely coincidental.
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How do we “‘see” things in our 3D world?

3D object

Cornea

Light
waves

Section of a S° sphere

» Observed image is 2D




Could we “‘see” a 4D object by defining a 3D retina?
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Hyper-image — 3D image of a 4D object
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In our 3D world, the observed angular size of an object decreases as ~ .-

with the distance to the observer r.




In a 4D world, the observed angular size of an object also decreases
with the distance to the observer r.

Example in flat space of 3D hyper-images of an S3—sphere with unit radius,
observed at diferent distances r:




Could we then “see” the image of higher
dimensional black holes?



Why consider extra dimensions?

- Impact of Higher Dimensions:
Adding extra dimensions alters the expectations from 4D gravity, revealing a richer landscape of
solutions.
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- Examples 5D Solutions:

Examples include Tangherlini and Myers-Perry black holes, both with spherical horizons.
F.R. Tangherlini, Nuovo Cim. 27 (1963) 636.
R.C. Myers and M.J. Perry, Annals Phys. 172 (1956) 304.



The 5D Myers-Perry solution (equal spins)

e

ds® = — dt* + (z + a?) (% + d6? + sin” §d¢? + cos” 0d¢2>

2
o2 o vafusb g ofGag)]

N R T e N (w + a,2)2 — ylz.
The coordinate range is r € [0,00[, 8 € [0,7/2] ,¢ € [0,27] , 9 € [0, 27|

Describes a topologically spherical Black Hole, of mass M = 37w u?/(8G).

It simultaneously rotates in two orthogonal planes with equal angular momenta J = %M a.

5D — 4 spatial dimensions + 1 time dimension




Far field x > u

ds® = —di? + dr? + 12 (d92 +sin? 0 d¢? + cos? 0 dsz)

Hypersurfaces with ¢ = const. and r = const. are S>-spheres in Hopf coordinates.
These are not spherical coordinates.

If also 6 = const., the surface described by (¢, 1) covers a 2D-torus.




The 5D Myers-Perry solution has three Killing vector fields, 0;, 04 and 0,.
This leads to Killing constants along geodesic motion, p, = —F ,ps = ® and p,, = V. There exists a
non-trivial constant of motion, X', which makes the geodesic motion fully integrable.

The null geodesic equations with equal spins are:
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Spherical Photon Orbits
The Kerr shadow is determined by a set of photon orbits with constant radial coordinate.
The same happens with the Myers-Perry hyper-shadow.
The Myers-Perry spherical photon orbits are obtained by the conditions:

e

=4()
dx

where 4y = p*%2. It is possible to solve these equations analytically.




The physical domain of the Spherical Photon Orbits in the Myers-Perry spacetime:

Amplitude
in @ coord.
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ZAMO observation frame
We consider a 5-dimensional generalization of a zero angular momentum observer (ZAMO):
The locally measured momenta of the light ray in the ZAMO frame are:

(DRl

P =e i, p' et i
P = p, P =g,
p(e) 0 élfbe)pu :

In this frame, the hyperimage local coordinates (X,Y, Z) can be expressed as:

p(®) p®) p®

X:_\/m_om7 Y:_\/x_op(—t)’ Z:\/x_op(_t)




Hypershadow parametrization

By considering an observer in the far-away limit (x, — co) one obtains:

P
2 _siné’o
v
yioe
cosf, ’
i
— 4t /—9(®2 + U2) + 2(T2 — B2)cos(2 2 in2(20) .
Z isin(%o)\/ 2(P2 + W2) 4 2( ) cos(20) + (a? + K) sin“(260)

The constants of geodesic motion {K, ¥, &} are determined by the spherical photon orbits.




Introducing the SD Myers-Perry Hypershadow
(with maximum spin)
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Plots of the 2D surface boundary of the Myers-Perry hypershadow
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Hypershadow with spin a=0.49.
Reference sphere inside to highlight
deviations from a sphere.




Plots of the 2D surface boundary of the Myers-Perry hypershadow

Reference sphere S = r-""""""'hypershaLow
SN W
R
!|
Y = X :
Two superimposed hypershadows Hypershadow with spin a=0.49.

with spins a=0.1 (blue), and a=0.49 (red). Reference sphere inside to highlight
deviations from a sphere.




Light point 2

Light point 1
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The innermost light rings
determine Light point 1 ,
Amplitude
in 6 coord.
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The outermost light rings
determine Light point 2

The innermost light rings
determine Light point 1 .
Amplitude
in 6 coord.
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The hypershadow has a symmetry
axis along the light points!




Simple Hypershadow parametrization

These symmetries can be explored to convey a much simpler parameterization of the hypershadow:

X = —asinf, — cosvcosl, /Q — a?,
Y = —acosf, + cosvsinbf, /Q — a?,
Z =sinvy/Q — a?,

where 6, is the observation angle, and the parametrization coordinates have the range
x € [z1,x2] and v € [0, 27]. In addition:

(x ol a2)2 il
(1 bl D e a2)2

e 1 (a2—|—x)2—a:
a(r) =—a— — [x+1—\/§ T

a
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The Road ahead

- Hypershadows of black rings:
What is the hyperimage of other black hole solutions with toroidal topology? Is it a 3D torus?

- Continuous Symmetry:
It is not clear if the existence of a symmetry axis for the hypershadow is a consequence of equal
spins or connected with deeper symmetry properties of the Myers-Perry spacetime.



Bonus topic:
Imaging the gravitational collapse
of a pressureless star into a Black Hole




Metric for the collapsing dust matter [Oppenheimer + Snyder (1939)] :

ds? = —dr? + e*dR? + r2dQ?
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Metric for the collapsing dust matter [Oppenheimer + Snyder (1939)] :

e = —t e

&
/>\/

proper time

4

ol = ek

Areal radius

(dust frame) Comoving dust radius

>
|
=
=
<l

Possible to find analytical
solution with the dust starting
from rest at 1=0.

(dust frame)

Every dust particle worldline has

{R, 0, p} = const.

R, — co-moving radius of the star

M —— mass of the star



Black body radiation
The star is assumed to radiate Black body radiation at constant temperature 7.
The spectral radiance for the wavelength A being:
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Black body radiation
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How to we obtain the perceived color of the star given some spectra?




Brief introduction to Colorimetry
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For color vision For vision at very
low light intensity




The human eye has three types of color sensors that respond to different
ranges of wavelengths.

In 1931 the International Commission on lllumination (CIE) published
the CIE 1931 color spaces which define the relationship between the
visible spectrum and the visual sensation of specific colors by human
color vision.
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Tristimulus values XY 7

The stimulus of the light cones by standard observer is given by:
X:/
A
Y:/
A

e / Bl

Bx(\) £(A) dA
Bx(\) G(A) dA

These values (X,Y, Z) are approximately the Red-Green-Blue perceived colors, although there is a
more complicated mapping between the two.
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Tristimulus values XY 7

The stimulus of the light cones by standard observer is given by:

J
i

e A B Gz

X = | Ba()) 200) dA
= [ Bxa(A) g(A) dA

These values (X, Y, Z) are approximately the Red-Green-Blue perceived colors, although there is a
more complicated mapping between the two.

We can recover the perceived color of
a black body at different temperatures

-

lava, Betelgeuze sun Sirius
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Expectation for collapse imaging?




Expectation for collapse imaging?




Light rays that are emitted at the same proper
time at the star surface arrive at the observer at
different times.



Expectation for collapse imaging




Video with the collapse of a dust star, starting from rest, with an
initial radius of 8M, and surface temperature of 5000 °C:



Star_5000K_glow_zoom.avi
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