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Black holes immersed in strong magnetic fields





Outline 

Why magnetic fields?

How to model magnetic fields?

What are the effects of magnetic fields?



The Kerr solution describes an (eternally) isolated black hole. 

Black holes and magnetic fields

In astrophysical scenarios, additional ingredients can play a role.

• Accretion

• DM Halo

• Magnetic Fields



One possibility to model magnetic fields around BHs is to use numerical 
relativity.

Magnetic fields around black holes

One simple analytical approach considers the magnetic field as a test field.

Non-accessible. Computationally expensive.  



We want to solve Maxwell’s equations

∇μFμν = 0, ∇[σFμν] = 0,

as a test field on Kerr background 

ds2 = − (1 −
2μr
Σ ) c2dt2 −

4μacr sin2 θ
Σ

dtdϕ +
Σ
Δ

dr2 + Σdθ2 + (r2 + a2 +
2μra2 sin2 θ

Σ ) sin2 θdϕ2

⃗B



One simple and very useful idea to solve Maxwell’s equations on a curved 
background is to consider the 4-potentials as Killing vectors: 

Fμν = ∇μψν − ∇νψμ = − 2∇νψμ .

Hence 

∇νFμν = − 2∇ν ∇νψμ = − 2Rμ
νψν .

0 

For a test magnetic field in Kerr spacetime:



In the presence of a uniform magnetic field, a black hole accretes charge up to 
a maximal value:

Can we compute the background geometry when the magnetic field 
backreacts?

Q = 2B0J For extremal Kerr black hole:

B ≈ 10−4 − 10−5G,

Q/M ≈ 10−24



Consider the free Maxwell's equations 

The symmetries of Maxwell's equations

This system is invariant under the following transformations:

∇ . ⃗E = 0, ∇ . ⃗B = 0,

∇ × ⃗E = −
∂ ⃗B
∂t

, ∇ × ⃗B =
∂ ⃗E
∂t

.

⃗E → ⃗B , ⃗B → − ⃗E .⃗E → ⃗E cos θ + ⃗B sin θ,
⃗B → ⃗B cos θ − ⃗E sin θ,



The Ernst formalism in General Relativity is important for generating stationary 
and axially symmetric solutions. Consider Einstein-Maxwell's field equation:

The symmetries of Einstein-Maxwell's equations

In the Lewis-Weyl-Papapetrou form, we have:

Rμν −
1
2

gμνR = 2 (FμαFα
ν −

1
4

gμνFαβFαβ), ∇μFμν = 0, ∇[σFμν] = 0.

ds2 = f (dt − ωdϕ)2 − f −1 [r2dϕ2 + e2γ (dr2 + dz2)],

A = At(r, z)dt + Aϕ(r, z)dϕ .



The field equations in these coordinates are:

(ℜ(ℰ) + |Φ |2 )∇2ℰ = (∇ℰ + 2Φ*∇Φ) . ∇ℰ,

(ℜ(ℰ) + |Φ |2 )∇2Φ = (∇ℰ + 2Φ*∇Φ) . ∇Φ,

with

Φ = At + iÃϕ, ℰ = f − |ΦΦ* | + ih,

∇Ãϕ =
f
ρ

̂eϕ × (∇Aϕ + ω∇At), ∇h = −
f2

ρ
̂eϕ × ∇ω − 2ℑ(Φ*∇Φ),



The Ernst equations admits a group of symmetry. Some elements of this group 
are: 

ℰ′￼ =
ℰ

1 + i a ℰ
, Φ′￼ =

Φ
1 + i a Φ

Schwarzschild Taub-Nut

Schwarzschild Magnetized Schwarzschild

ℰ′￼ =
ℰ

1 + B Φ − 1
4 B2ℰ

, Φ′￼ =
Φ − 1

2 Bℰ

1 + B Φ − 1
4 B2ℰ

.



ds2 = − (1 −
2M
r ) dt2 +

dr2

(1 − 2M
r )

+ r2dΩ2, ds2 = − Λ2 (1 −
2M
r ) dt2 +

Λ2

(1 − 2M
r )

dr2 + r2Λ2dθ2 +
r2 sin2 θ

Λ2
dϕ2,

⃗B



The magnetized Schwarzschild geometry is given by 

The magnetized Schwarzschild geometry

Λ = 1 +
B2r2 sin2 θ

4
.

ds2 = − Λ2 (1 −
2M
r ) dt2 +

Λ2

(1 − 2M
r )

dr2 + r2Λ2dθ2 +
r2 sin2 θ

Λ2
dϕ2,

• There is an apparent horizon at .r = 2M

• There is a curvature singularity at .r = 0



The solution is not asymptotically flat as it approaches the Melvin universe in 
the far away region:

ds2 ≈ − Λ2dt2 + Λ2dr2 + r2Λ2dθ2 +
r2 sin2 θ

Λ2
dϕ2,

Near Zone Far Zone



The motion of light can be described using Hamilton’s equations:

Light rings, shadow and gravitational lensing 

·xμ =
∂ℋ
∂pμ

, ·pμ = −
∂ℋ
∂xμ

, ℋ =
1
2

gμνpμpν,

We can split the Hamiltonian in two parts:

ℋ = T(r, θ) + V(r, θ, E, L),

T(r, θ) = grr(pr)2 + gθθ(pθ)2,

V(r, θ, E, L) =
L2

Λ2 (1 − 2M
r ) (H(r, θ) +

1
η ) (H(r, θ) −

1
η )



H(r, θ) =
Λ2 (1 − 2M

r )
1
2

r sin θ



There exist a critical value  such that 

• Undercritical: For  , there are two light rings outside the apparent 
horizon. 

• Overcritical: For , there are no light rings at all outside the apparent 
horizon!   

The exact value of  is:

Bc

B < Bc

B > Bc

Bc

BcM =
2
5

169 − 38 19
15

≈ 0.1893



How can a black hole have no light ring?



w =
1

2π ∮C
dΩ .

r

θ

C

Asymptotically flat case

⃗v = ( ∂rH
grr

,
∂θH

gθθ ),

Topological charge of asymptotically flat black holes

w = − 1



w =
1

2π ∮C
dΩ .

r

θ

C

Asymptotically flat case

⃗v = ( ∂rH
grr

,
∂θH

gθθ ),

Topological charge of asymptotically Melvin black holes

w = 0



In order to simulate the shadow and gravitational lensing, we apply backwards 
ray-tracing techniques: 

How does a black hole without LR look like?



BM = 0 BM = 0.3 

BM = 0.4 BM = 0.6 



For an overcritical case: 



Observer at 45º Observer at 30º



Magnetic fields can play an important role around black holes in 
astrophysical realistic environments. 

We can explore the symmetries of Einstein-Maxwell's equations to obtain 
novel solutions in General Relativity.  

Strong external magnetic fields can give rise to intriguing phenomena such 
as black holes without any light ring.

Final Remarks
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