CIDMA| Gr@v fCT msto.

e a Tecnologia

‘;-—I’PLL

Amazoman Worksho

on Gravity Guilherme Raposo

and ( /D) ‘ Universidade de Aveiro (Gr@v)
AhaIOSue Mbdel X,

June 17th - 21at 2024 17/06/2024

Federal University of Pard

R T ekl s i e B i




Our Goalss

* Understand the frameworks to model
compact objects and ultracompact
objects in general relativity.

How will we do {it?
* What are compact objects?

 Types of compact objects? How to
model them?

 What are exotic compact objects? Why
do we care?

* How to model them?

* How to test for them




Compact Object Course - Overview

Some time ago.c.

W TECNICO LISBOA

Topicos em Relatividade Geral e Cosmologia

Course description

8 fevereiro 2016, 11:42 Vincenzo Vitagliano

Introduction to QFT in curved spacetime (8 lectures) - Dr. Vincenzo Vitagliano

Canonical quantization and particle production. Quantum fields in an expanding universe. Bogoliubov transformations.

Unruh effect. Hawking radiation and black holes thermodynamics. The Casimir effect. Path integrals and vacuum polarization.
Effective action for a driven harmonic oscillator and in general. Semiclassical gravity. Zeta function renormalization.
Computation of functions using heat kernels.

Compact objects (8 lectures) - Dr. Caio Macedo

Newtonian stars and dark stars. Relativistic matter: equation of state. Equilibrium configurations.
Basic properties of white dwarfs and neutron stars. Black holes: brief view. Stars formed by fundamental fields:
boson stars, oscillatons, singlets.

Introduction to numerical relativity (4 lectures) - Dr. Andrea Nerozzi

Numerical methods for solving partial differential equations. Elliptic equations. Hyperbolic equations.
Fixed and adaptive mesh refinement. The two-body problem in general relativity.

3+1 splitting of spacetime. Extrinsic curvature. The constraints. ADM evolution equations. BSSN evolution
equations. Numerical solution of the constraints. Wave extraction and the Newman-Penrose formalism.



Compact Object Course - Overview

Some time ago.c.

Now | will try give you a (short) updated
version!

W TECNICO LISBOA

Topicos em Relatividade Geral e Cosmologia

Course description

8 fevereiro 2016, 11:42 Vincenzo Vitagliano

Introduction to QFT in curved spacetime (8 lectures) - Dr. Vincenzo Vitagliano

Canonical quantization and particle production. Quantum fields in an expanding universe. Bogoliubov transformations.

Unruh effect. Hawking radiation and black holes thermodynamics. The Casimir effect. Path integrals and vacuum polarization.
Effective action for a driven harmonic oscillator and in general. Semiclassical gravity. Zeta function renormalization.
Computation of functions using heat kernels.

Compact objects (8 lectures) - Dr. Caio Macedo

Newtonian stars and dark stars. Relativistic matter: equation of state. Equilibrium configurations.
Basic properties of white dwarfs and neutron stars. Black holes: brief view. Stars formed by fundamental fields:
boson stars, oscillatons, singlets.

Numerical methods for solving partial differential equations. Elliptic equations. Hyperbolic equations.
Fixed and adaptive mesh refinement. The two-body problem in general relativity.

3+1 splitting of spacetime. Extrinsic curvature. The constraints. ADM evolution equations. BSSN evolution
equations. Numerical solution of the constraints. Wave extraction and the Newman-Penrose formalism.



Compact Objects
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Back to basics

What detines how compact a celestial body is?

Q!
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Back to basics

What detines how compact a celestial body is?

g: 9 e?"

What macroscopic quantities are needed to define the gravitational
field of a finite-size body?

1. Mass



Back to basics

What detines how compact a celestial body is?

g: 9 e?"

What macroscopic quantities are needed to define the gravitational
field of a finite-size body?

1. Mass

2. Radius



Back to basics

What detines how compact a celestial body is? i

— - = —
P = e o
- —
o
-

What if light cannot escape?
“Dark Star” —John Mitchel, 1783

Dimensionless quantity:
C GM
c’R




Compact Objects in Our Universe

Table 1.1
Distinguishing Traits of Compact Objects
Mass* Radius® Mean Density  Surface Potential

Object (M) (R) (g cm™?) (GM/Rc?)
Sun M, R, 1 10-°
White dwarf <M, ~1072Rg <10’ ~10~*
Neutron star ~ 1-3M, ~107°Rg <107 ~10""
Black hole Arbitrary 2GM/c? ~M/R? ~1

M, = 1989 x 103 ¢
’Ro = 6.9599 X 10'% cm

[Table 1.1: Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects,
Shapiro & Teukolsky]



Compact Objects: A definition

Compact Object (CO):
Object who's exterior spacetime contains an ISCO.

R <6M
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Compact Objects: A definition

Compact Object (CO):
Object who's exterior spacetime contains an ISCO.

R <6M

Ultracompact Object (UCO):
Object who's exterior spacetime contains a photonsphere.

R<3M

Exotic Compact Object (ECO):
Compact object that is not a black hole nor a neutron star.

Black Hole Mimicker:
Ultracompact object that is mimics the properties of a black hole.



Compact Objects in Our Universe

<8 Solar Masses [8, 25] Solar Mass > 25 Solar Mass

o o o

W I E Neutron Star Black Hole

<




Black Holes

“In my entire scientific life, extending over forty-five years, the most shattering
experience has been the realization that an exact solution of Einstein's
equations of general relativity, provides the absolute exact representation of
untold numbers of massive black holes that populate the universe. “

S. Chandrasekhar,
The Nora and Edward Ryerson Lecture, Chicago 1975




Black Holes

“In my entire scientific life, extending over forty-five years, the most shattering
experience has been the realization that an exact solution of Einstein's
equations of general relativity, provides the absolute exact representation of
untold numbers of massive black holes that populate the universe. “

S. Chandrasekhar,
The Nora and Edward Ryerson Lecture, Chicago 1975

One single exact solution:
e Stellar BHs

Black Holes are simple and * Supermassive BHs

economical!
Only requires two/three parameters

* Mass, Angular Momentum, Charge



Neutron Stars

Layered Structures

Outer Crust:

* Coulomb lattice with heavy nuclei &
degenerate electron gas

Inner Crust:

* Lattice of neutron-rich nuclei together with
superfluid neutron gas and electron gas.

Outer Core:
* A homogeneous fluids layer, npepy-matter.

Inner Core:

* Big questions here: deconfined quark
matter, hyperons, Bose-Einstein meson
condensates...

log;o(po[gem™])

s o Outer crust.
i Inner crust .
- Outer core ;
i o1 Inner core
10} ~
i Q n s
| & P
| 2
51
O ...................... i : 5 1
0 2 4 6 8 10 12 14
r/km

Quite complicated to model!

Neutron star EoS is one of the main open problems
in astrophysics!



Self-gravitating fluids

Outside the star:
Inside the star: P — 0

10



Tools to build a star!

The extension to GR was done in 1939.

.
A.vast furnace burning in outer space,

> -
A ¥

[Clip of Oppenheimer, 2023]
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Tools to build a star!

1) Our set of equations (from GR)s

On Massive Neutron Cores

* Einstein’s equations; J. R, Oprssenes np G. M. Vouxors
. Depariment of Physics, University of California, Berkeley, California
» Stress-ene rgy tensor conservation. (Received January 3, 1939)

It has been suggested that, when the pressure within stellar matter becomes high enough,
a new phase consisting of neutrons will be formed. In this paper we study the gravitational
equilibrium of masses of neutrons, using the equation of state for a cold Fermi gas, and general
o o relativity. For masses under 3©® only one equilibrium solution exists, which is approximately
2)) SE@@@DW ﬁ[lm@ ﬁ@[ﬁm @f m@ﬁ[ﬁ”@ ; describeg by the nonrelativistic Ferrii equa(tlion of state and Newtonian gravitati(?nal theory.
For masses 30 <m <@ two solutions exist, one stable and quasi-Newtonian, one more
. P condensed, and unstable. For masses greater than §(© there are no static equilibrium solutions.
¢ e'g' Spherlca u'y Sym metrlc’ These results are qualitatively confirmed by comparison with suitably chosen special cases
of the analytic solutions recently discovered by Tolman. A discussion of the probable effect
of deviations from the Fermi equation of state suggests that actual stellar matter after the
exhaustion of thermonuclear sources of energy will, if massive enough, contract indefinitely,
although more and more slowly, never reaching true equilibrium.

3) Some form for the stress-energy tensors

* Perfect-fluid; RELATIVITY
THERMODYNAMICS

AND

m/ _ 47T?“2p COSMOLOGY

3 BY
- m + 4nre P Tolman-Oppenheimer-Volkoff SRS o SR

PROPESSOR OF PAYSICAL CHENISTRY AND MATHEMATICAL

r(r — 2m) (TOV )Equations o
P'=—(p+P)¢

FEBRUARY 15, 1939 PHYSICAL REVIEW VOLUME 55

12



Tools to build a star!

1) The tinal ingredients Equation of Statel

Specifies the microphysics of the body. In general, can be quite complex.

P = p(n, 8)

Simplification: The fluid is adiabatic and isentropic.

| > P = P(p)

Most familiar form!

13



Fluid-ball conjecture

Static and asymptotically flat fluid solutions are
spherically symmetric!

Proved by [Massod-ul-Alam, 2007] for realistic case
scenarios.




Equation of State

In general: No analytical solution.

Special case: Constant density star.

(1 - 2Mr* /R — (1~ 2M/R)'V

P03(1 = 2M/R)'/2 — (1 — 2Mr?/R3)1/2

What happens to our star when we increase the central pressure?

M/R — 4/9

15



Equation of State

Buchdahl’s Bound:

e —
Buchdahl’s Bound

Under some set of
assumptions, the compactness
of a self-gravitating object must
be bounded by:

M/R < 4/9

Non-negative Decreasing
PHYSICAL REVIEW VOLUME 116, NUMBER 4 > density and Perfect fluid Isotropy Classic GR density Staticity
e . . ressure
General Relativistic Fluid Spheres P
H. A. Bucupanr*
Institute for Advanced Study, Princelon, New Jersey
(Received June 16, 1959)
A . . . R . —— [ [ —— F [ —_—
In Part I of this paper certain well known results concetning the Schwarzschild interd _— _— _— _— _— f—— ]
generalized to more general static fluid spheres in the form of inequalities comparing the bou — A A —— Y A
g4 With certain expressions involving only the mass concentration and the ratio of the central —_— — —_— —_— _— _—
—_— _— —_— —_— —_— —_—

to the central pressure. A minimal theorem appropriate to the relativistic domain is derived
pressure, corresponding to a well-known classical result. Inequalities involving the proper ¢
potential energy are also considered, as is the introduction of the physical radius in place of
radius. A singularity-free elementary algebraic solution of the field equations is presented ar
obtained from it compared with the limits prescribed by some of the inequalities. In Part ]
given to the question whether the total amount of radiation emitted during the symmetricz
contraction of an amount of matter whose initial energy, at complete dispersion, is Wo can e

16



Maximum Compactness of Stars

Let’s go back to Buchdahl. We know that
Buchdahlis a limit, but does it make physical
sense?

Incompressible fluid = Infinite Sound Speed! Not
very realistic.

17



Maximum Compactness of Stars

Let’s go back to Buchdahl. We know that
Buchdahlis a limit, but does it make physical
sense?

What is the highest compactness of a
physically viable compact object?

5 ok,

>

A '."'Jg'}.,, 4 ‘/A
Incompressible fluid = Infinite Sound Speed! Not s Wi &
very realistic. [My very real ultracompact backpack in Marajd]

17




Integration of TOV equations

When you cannot do it analytically - Integrate numerically!

1. Pick avalue of the central density. The equation of state gives the central
pressure.

2. Integrate the system from r=0 outwards. EOS is used at each point to calculate
the density

3. When to stop calculation?

* When Pressure is zero, we have found the radius of the star!

4. What to do with the initial value of the potential?

19



Some analytical EoS

Constant Density: Checked! Leads to Buchdahl limit.

20



Some analytical EoS

« Constant Density: Checked! Leads to Buchdahl limit.

« Constant adiabatic index: Two families of EOS: (Tooper, 1965) P = KQ’}’

1) Polytropes (Tooper, 1965);
K
v—1

no bounded solutions for n>5

p=CKYp+

Q’Y

2) Linear constant sound speed (Bondi, 1964):

K Y
p= 0" | >P
v—1

Scale-invariant, but no bounded solutions!

—1)p

20



Some analytical EoS

« Constant Density: Checked! Leads to Buchdahl limit.

« Constant adiabatic index: Two families of EOS: (Tooper, 1965)

1) Polytropes (Tooper, 1965);
K
v—1

no bounded solutions for n>5

p=CK'p+ 0

 Affine constant sound speed:

v—1
Y

P = PO T

2) Linear constant sound speed (Bondi, 1964):

K
v—1

p= o’

Scale-invariant, but no bounded solutions!

12 | > P=(y—1)(p— po)

20



Some analytical EoS

« Constant Density: Checked! Leads to Buchdahl limit.

« Constant adiabatic index: Two families of EOS: (Tooper, 1965)

1) Polytropes (Tooper, 1965); 2) Linear constant sound speed (Bondi, 1964):
K K ¥
— CKY7y + Y p—=—_—70
no bounded solutions for n>5 Scale-invariant, but no bounded solutions!

 Affine constant sound speed:

v —1 K

Po + 1

Y Y

Always bounded. This class includes Christodoulou’s hard phase material and MIT bag model (quark stars).
20

p= o’



Maximum Compactness of Stars

With constant sound speed EoS we can look for bounds on
viable stars!

21



Maximum Compactness of Stars

With constant sound speed EoS we can look for bounds on

viable stars!

BlackHole: C' = 0.5

BuchdahtBound: C' = 4/9

Causal BuchdahlBound: (0 = ().364

Causal Buchdahl bound + Radial Stability:

C =0.354

Mass M

0.14
0.12
0.10
0.08F
0.06F
ook

0.02] )

R g
. -
- - -
| L1 1 I L1 1 1 I L1 1 1 | 11 1 I

0.00  0.05
Radius R
[Urbano & Vermaee, 1810.07137]

0.10 0.15 0.20 0.25 0.30

102

102
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Realistic approximations of NSs

Tabulated EOS for Neutron Stars:

Construct EOS tables based on nuclear physics models. (APR4, Sly, MPA, H4, MS1, etc..)

“Soft” EoS are
preferred over
“Stiff” EoS

[Ligo/Virgo, 1805.11581]

2000

1500

= 10001

0

1000

1250

22



Realistic approximations of NSs

Piecewise Polytrope

Different neutron star layers are approximated by different polytropes. (3 is good enough).

Crust: Degenerate gas of relativistic electrons. (see Chapter 2, Black Holes, White Dwarfs and Neutron
Stars: The Physics of Compact Objects, Shapiro & Teukolsky)

v<4/3

23



Realistic approximations of NSs

Piecewise Polytrope

Different neutron star layers are approximated by different polytropes. (3 is good enough).

Crust: Degenerate gas of relativistic electrons. (see Chapter 2, Black Holes, White Dwarfs and Neutron
Stars: The Physics of Compact Objects, Shapiro & Teukolsky)

v<4/3

Middle: Degenerate gas of non-relativistic neutrons.

v=15/3
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Realistic approximations of NSs

Piecewise Polytrope
Different neutron star layers are approximated by different polytropes. (3 is good enough).

 Crust: Degenerate gas of relativistic electrons. (see Chapter 2, Black Holes, White Dwarfs and Neutron
Stars: The Physics of Compact Objects, Shapiro & Teukolsky)

v<4/3
 Middle: Degenerate gas of non-relativistic neutrons.
v=15/3
 Core: Gas of ultra-relativistic quarks/fermions.
v =1

All pieces are “Soft” EoS.
23



Maximum Compactness of Stars

Superluminal

Casual Fluid Stars

i i
I I
: :

6 Fluid St

10 ui ars : :
Supermassive BHs : :
i i
: :
150 , |
I I
I I
: :
50 i i
: :
Stellar BHs : :
I I
5 : Neutron Stars :
I I
2 i i
I I
I I

2 3 ' g

Black Hole 295
Limit (horizon) (Buchdahl) (Photosphere) (1ISCO) ro/M

L — Compact Objects i

Ultracompact Objects

24



A Zoo of Compact Objects

Quantum Anisotropic Stars
Corrections

Supermassive BHs

150

Fuzzballs, gravastars,
wormholes, etc...

Boson Stars

O e e e e e ——— i —————

50
Stellar BHs
5)
Neutron Stars
2
2 >
Black Hole 295
Limit (horizon) (Buchdahl) (Photosphere) (1ISCO) ro/M
L — Compact Objects i

Ultracompact Objects

24



Exotic Universe

Why do we care about this?

Motivation #1: “The skeptical”.
Black holes are also “exotic”. Singularity at the center and a horizon as a surface.

Motivation #2: “The idealist”
Black holes and Neutron stars may be just 2 species in a larger Zoo of Compact Objects.

Motivation #3: “The pragmatic”
Constraining everything else would help us validate the black hole model.

25
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Last lecture:

Compact Objects and Perfect Fluids:

What are compact objects?

Self-gravitating fluids

Equation of State

Buchdahl limit




Our ECO Wishlist

 |fan ECO represents a BH alternative it should have less problems than BHs have.

* |ftheyform in Nature, we want:

1. Horizonless and Singularity free!

Regular Inside




Our ECO Wishlist

 |fan ECO represents a BH alternative it should have less problems than BHs have.

* |ftheyform in Nature, we want:

How long can

1. Horizonless and Singularity free!
it live?

2. Stable




Our ECO Wishlist

 |fan ECO represents a BH alternative it should have less problems than BHs have.

* |ftheyform in Nature, we want:
ECO

1. Horizonless and Singularity free!

Time-evolution

2. Stable

3. Formation mechanism

Physically Reasonable Initial Conditions



Our ECO Wishlist

* Ifan ECO represents a BH alternative it should have less problems than BHs have.

* |ftheyform in Nature, we want:

1. Horizonless and Singularity free! @
2. Stable
© ©

3. Formation mechanism

4. Well understood dynamics



2 Approaches
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Pick your favourite and study it! OR

Parametrized
ECO
Model

Build an ECO modelled with some
general parameters



Compass to construct ECOs

Buchdahl’s Bound:

Under some set of
assumptions, the compactness
of a self-gravitating object must
be bounded by:

M/R < 4/9

PHYSICAL REVIEW VOLUME 116, NUMBER 4 »

General Relativistic Fluid Spheres

H. A. Bucupaur*
Institute for Advanced Study, Princelon, New Jersey

(Received June 16, 1959)

In Part I of this paper certain well known results concerning the Schwarzschild interis
generalized to more general static fluid spheres in the form of inequalities comparing the bou
g4 with certain expressions involving only the mass concentration and the ratio of the central
to the central pressure. A minimal theorem appropriate to the relativistic domain is derived
pressure, corresponding to a well-known classical result. Inequalities involving the proper ¢
potential energy are also considered, as is the introduction of the physical radius in place of
radius. A singularity-free elementary algebraic solution of the field equations is presented ar
obtained from it compared with the limits prescribed by some of the inequalities. In Part ]
given to the question whether the total amount of radiation emitted during the symmetrice
contraction of an amount of matter whose initial energy, at complete dispersion, is Wo can e
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Exotic Compact Object Models

Case 1: The “vanilla” wormhole case.

External Vacuum Solution
(typically, Schwarzschild or Kerr)

ds® = —(1 —2M/r)dt* + (1 — 2M /r) ‘dr® + r?dQ°

Boundary conditions
on the surface

Interior Model

ds® = —(1 — 2M /r)dt?
+(1 = 2M /r) tdr? + r2dQ?

Fig. from [Cardoso, Franzin, Pani, 2016]



Exotic Compact Object Models

Case 2: The “gravastar” case. [Mazur, Mottola, 2001]
External Vacuum Solution
(typically, Schwarzschild or Kerr)

ds® = —(1 —2M/r)dt* + (1 — 2M /7)) 'dr? + r?dQ?

Boundary conditions
on the surface

Interior Model

ds? = — (1 — 2Cr2/’r'3)
+(1 - 2C'r2/rg)1d'r2 + r2dQ?

[Visser, Whiltshire, 2004] i



Exotic Compact Object Models

Case 2: The “gravastar” case. [Mazur, Mottola, 2001]
External Vacuum Solution
(typically, Schwarzschild or Kerr)

ds® = —(1 —2M/r)dt* + (1 — 2M /7)) 'dr? + r?dQ?

Boundary conditions
on the surface

Interior Model

This construction of ECOs is very forced.

ds? = — (1 — 2Cr2/’r'3)

N 27,2\ 1, 2 2 1002 ) )
+(1—20r/rg) dr® +r%dQ * No dynamics or formation;

* Stability studies are complicated.

[Visser, Whiltshire, 2004] i



Anisotropic Stars

Decreasing Staticity

Non-negative
density and Perfect fluid Classic GR density
pressure H
F——] _ —

Anisotropic ECOs In
fluids

Deformed
objects
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gravity objects

Other matter
fields

Exotic
matter



Anisotropic Stars

The first discussion of anisotropy in the context of stars dates from [J. Jeans, 1922]
Context of “Kapteyn-spheroidal stars”.

“Recently” the interest in anisotropic stars started with [Bowers & Liang, 1974].
Several works in the past have explored the structure and properties of anisotropic

stars.
[Heintzmann & Hillebrand, 1975; Herrera, 2013; Biswas & Bose, 2019; etc.]

However, anisotropic stars have some problems.



Anisotropic Stars

Stress-energy tensor of an anisotropic fluids

C,XB — dlag(_uvpﬂ 7pJ_7pJ_)7



Anisotropic Stars

Stress-energy tensor of an anisotropic fluids

C,XB — dlag(_uvpﬂ 7pJ_7pJ_)7

Einstein’s equations + stress-energy tensor conservation for this matter leads to:
Anisotropic TOV equations:

Same as isotropic except:

Pl = ~(p+P)# — (P, ~ P)



Anisotropic Stars

Stress-energy tensor of an anisotropic fluids

C,XB — dlag(_uapﬂ 7pJ_7pJ_)7

Einstein’s equations + stress-energy tensor conservation for this matter leads to:
Anisotropic TOV equations:

Same as isotropic except:

Pl = ~(p+P)# — (P, ~ P)

Solution is singular unless anisotropy vanishes at the centre!



Anisotropic Stars

The anisotropic mechanism must make the pressure isotropic at the center.

10



Anisotropic Stars

The anisotropic mechanism must make the pressure isotropic at the center.
Bowers & Liang postulated an “ad-hoc” EOS.

P.—P,=Cgp(p+ P.)(p+ 3F,) r?

Other works have postulated similar EoS. However, all have some problems!

10



Anisotropic Stars

The anisotropic mechanism must make the pressure isotropic at the center.
Bowers & Liang postulated an “ad-hoc” EOS.
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The anisotropic mechanism must make the pressure isotropic at the center.
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Other works have postulated similar EoS. However, all have some problems!

Problem 1) Formulated for static and spherically symmetric distribution of matter
only. Generalization not trivial.

Problem 2) New Eo0S is postulated and unrelated to any physical mechanism
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Anisotropic Stars

The anisotropic mechanism must make the pressure isotropic at the center.
Bowers & Liang postulated an “ad-hoc” EOS.

P, — P, =Cgrr (p+ P.) (p+3P:) 1
Other works have postulated similar EoS. However, all have some problems!

Problem 1) Formulated for static and spherically symmetric distribution of matter
only. Generalization not trivial.

Problem 2) New Eo0S is postulated and unrelated to any physical mechanism
responsible for anisotropies.

Problem 3) Violates the principle of equivalence in its weak form.
10



Anisotropic Stars

The anisotropic mechanism must make the pressure isotropic at the center.
Bowers & Liang postulated an “ad-hoc” EOS.

P, — P, =Cgrr (p+ P.) (p+3P:) 1
Other works have postulated similar EoS. However, all have some problems!

Problem 1) Formulated for static and spherically symmetric distribution of matter
only. Generalization not trivial.

Problem 2) New Eo0S is postulated and unrelated to any physical mechanism
responsible for anisotropies.

Tr; [Raposo+,2018]
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Main highlights:

Anisotropic Stars

10
1. Extremely compact configurations! More |-
compact and massive than isotropic fluid 5 1} -
stars! Always approach Schwarzschild =
compactness.

2. Can existin a wide range of mass!
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Anisotropic Stars

° ® 4 1.0 I = 'LL—~--___~::: ————— o ----------..._\
Main highlights: N : :
1. Extremely compact configurations! More T 06 —gﬂgﬁigﬁ §
compact and massive than isotropic fluid T 04 o108, MR=049
. 0.2 C=10* M/R=0.35
stars! Always approach Schwarzschild (ol Cm10t WR049 |
compactness. 1Of e |
2. Can exist in a wide range of mass! = A *
. . 0.6
3. The properties depend mildly on the = o
anisotropy scale, but strongly on the I
compactness! 0.0},
500} g
100}
- 50F A%
T 0
S T
If= ~:I:_-l—,#k:::3‘“““
0.0 0.2 0.4 0.6 0.8 1.0



Anisotropic Stars

Main highlights:

1.

Extremely compact configurations! More
compact and massive than isotropic fluid
stars! Always approach Schwarzschild
compactness.

Can exist in a wide range of mass!

The properties depend mildly on the
anisotropy scale, but strongly on the
compactness!

In the BH limit, the energy density and
pressure tend to flat values within the star
while the tangential pressure peaks close
to the radius.
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Anisotropic Stars

Main highlights:

1.

Extremely compact configurations! More
compact and massive than isotropic fluid
stars! Always approach Schwarzschild
compactness.

Can exist in a wide range of mass!

The properties depend mildly on the
anisotropy scale, but strongly on the
compactness!

In the BH limit, the energy density and
pressure tend to flat values within the star
while the tangential pressure peaks close
to the radius.

Dominant energy condition can break
close to the radius
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Anisotropic Stars

Covariant Formalism allows to do NR 1+1 evolutions.

Studies of non-linear stability of the star.
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Anisotropic Stars

Problem 1) Formulated for static and spherically symmetric distribution of matter
only. Generalization not trivial.

Problem 2) New Eo0S is postulated and unrelated to any physical mechanism
responsible for anisotropies.

Problem 3) Violates the principle of equivalence in its weak form.

Our EoS does not seem to be the way to solve 1 and 2. However...
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Same idea: Start from a Lagrangian formalism!
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Relativistic Elasticity

A classical rigid body:

Object for which the distances between points
are constant at any given instance in time
remains constant.
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remains constant.
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Relativistic Elasticity

A classical rigid body:

Object for which the distances between points
are constant at any given instance in time
remains constant.

Therefore: There are no rigid bodies in relativity!

Physically it takes some time for one end of a finite-size body to receive
information about forces acting on the other end.

15



Relativistic Elasticity

Ehrenfest’s paradox:

N
.tn[tl[q
t'llllfnm

No undeformable bodies in relativity!

16



Relativistic Elasticity

A bit of theory: (Mostly people in Mathematical Relativity community)
[Carter & Quintana, 1972 ; Beig & Schmid, 2003; Karlovini & Samuelsson, 2003]
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Relativistic Elasticity

A bit of theory: (Mostly people in Mathematical Relativity community)
[Carter & Quintana, 1972 ; Beig & Schmid, 2003; Karlovini & Samuelsson, 2003]

.c"‘j \'\ /
3 key ingredients: %
1. Physical spacetime (M, g)
* Where your deformed object lives. h x
2. Reference spacetime (B, ’)/)
* 3-Riemannian manifold - “undeformed body”. . _
- - )2

3. Projectionmap: II: M — B

* The level sets of the projection map are the worldlines of the medium particles.

17



Relativistic Elasticity

The projection map:
We can make it more concrete by assignhing some local coordinates.

II: X'(z")

Another way of thinking: The mapping defines a set of 3 scalar fields that
depend on the spacetime coordinates.
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Relativistic Elasticity

The projection map:

We can make it more concrete by assignhing some local coordinates.

II: X'(z")

Another way of thinking: The mapping defines a set of 3 scalar fields that
depend on the spacetime coordinates.

Once coordinates are assigned, we can construct the projection of the
spacetime metric on the 3-Riemannian manifold.

HIJ
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Relativistic Elasticity

The projection map:

We can make it more concrete by assignhing some local coordinates.

II: X'(z")

Another way of thinking: The mapping defines a set of 3 scalar fields that
depend on the spacetime coordinates.

Once coordinates are assigned, we can construct the projection of the
spacetime metric on the 3-Riemannian manifold.

HIJ

1
This gives you a definition of strain! EIJ = 5 (HIJ — ’)/IJ)
18



Relativistic Elasticity

The reference state:

Let’s think about 2D In a 2 +1 Minkowsky spacetime

Deformed object

Preferred undeformed state

The objected has stretches and deforms due to its natural preferred state.

19



Relativistic Elasticity

Our set of equations (from GR):s

We choose a Lagrangian density of the type.

L =cxt, 7Y
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Relativistic Elasticity

Our set of equations (from GR):s

We choose a Lagrangian density of the type.
L =cxt, 7Y

We can compute the stress-energy tensor:

oL
TNV — ZW — Lglﬂ/
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Relativistic Elasticity

Our set of equations (from GR):s

We choose a Lagrangian density of the type.
L =cxt, 7Y

We can compute the stress-energy tensor:

oL oL
Tlﬂ/ — 2@ — ﬁguy = 2
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Relativistic Elasticity

Our set of equations (from GR):s

We choose a Lagrangian density of the type.

L =cxt, 7Y

We can compute the stress-energy tensor:

oL oL P

Tlﬂ/ = 2@ — £gNV = 2 SH I 3,LX 3,,X — [:gl“/

It is straightforward to see that the Lagrangian is the energy density.
L=Tyx=0p
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Relativistic Elasticity

Our set of equations (from GR):s

We choose a Lagrangian density of the type.

L =cxt, 7Y

We can compute the stress-energy tensor:

oL oL P

Tlﬂ/ = 2@ — ﬁguy = 2 SH I 3,LX 3,,X — [:gl“/

It is straightforward to see that the Lagrangian is the energy density.
L=Tyx=0p

The choice of p = p(XI, H”)corresponds to the choice of an elastic law!

20



Relativistic Elasticity

Once we have the Lagrangian we can obtain the stress-energy tensor.

1 = puyuy, + 0,
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Relativistic Elasticity

Once we have the Lagrangian we can obtain the stress-energy tensor.

op
ogHv

T = puyu, + o,y Oy = 2 — phyuw

Cauchy stress tensor (orthogonal to the worldlines)
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Once we have the Lagrangian we can obtain the stress-energy tensor.

op
ogHv

T = puyu, + o,y Oy = 2 — phyuw

Cauchy stress tensor (orthogonal to the worldlines)

Important to note: Elastic laws can be very general.

p:p(XI,Hj])
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We can make additional simplifications.
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Relativistic Elasticity

Once we have the Lagrangian we can obtain the stress-energy tensor.

op
ogHv

T = puyu, + o,y Oy = 2 — phyuw

Cauchy stress tensor (orthogonal to the worldlines)

Important to note: Elastic laws can be very general.

p:p(XI,Hj])

We can make additional simplifications.

1. Homogeneous materials: The Lagrangian (EoS) does not depend on the positions.
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Relativistic Elasticity

Once we have the Lagrangian we can obtain the stress-energy tensor.

dp
ogHv

T = puyu, + o,y Oy = 2 — phyuw

Cauchy stress tensor (orthogonal to the worldlines)

Important to note: Elastic laws can be very general.
_ I J
P = p(X aHI)
We can make additional simplifications.
1. Homogeneous materials: The Lagrangian (EoS) does not depend on the positions.

2. Isotropic materials: The Lagrangian (EoS) depends only on the deformation ’H§ through its eigenvalues,
specifically the principal invariants.
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Relativistic Elasticity

Physical meaning:

Eigenvalues of Hﬁ tell you how much the principal directions of your material stretch when they are deformed.

l L

| > h~ L/l

22



Relativistic Elasticity

Physical meaning:
Eigenvalues of Hﬂ tell you how much the principal directions of your material stretch when they are deformed.

Equivalently: Linear densities along the principal directions.

3
Under these assumptions we get: O‘)m, — E p?ﬁ(@'m@(@)y
=1
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Relativistic Elasticity

Physical meaning:
Eigenvalues of Hﬂ tell you how much the principal directions of your material stretch when they are deformed.

Equivalently: Linear densities along the principal directions.

3
Under these assumptions we get: O‘)m, — E p?;Q(@')MGJ/(@')V
=1

The stress-energy tensor is diagonal, and we can identify the pressures as:

dp
i = Nig— — P
p on. P
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Relativistic Elasticity

Physical meaning:
Eigenvalues of Hﬂ tell you how much the principal directions of your material stretch when they are deformed.

Equivalently: Linear densities along the principal directions.

3
Under these assumptions we get: O‘)m, — E p?;Q(@')MGJ/(@')V
=1

The stress-energy tensor is diagonal, and we can identify the pressures as:

dp P Op Recall the fluid case!

. — —— = nNn— —
p’t‘,_n%ani p Bn
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Relativistic Elasticity

Physical meaning:
Eigenvalues of Hﬂ tell you how much the principal directions of your material stretch when they are deformed.

Equivalently: Linear densities along the principal directions.

3
Under these assumptions we get: O‘)m, — E p?;€(@'))u€(@')y
=1

The stress-energy tensor is diagonal, and we can identify the pressures as:

dp P Op Recall the fluid case!

. — —— = nNn— —
p’t‘,_n%ani p Bn

The relativistic elasticity theory tells you how to compute the pressures from the EOS.
No need for additional ad-hoc EoS.

22



Relativistic Elasticity

The formalism algo gives you expression for the speeds of sound!

Two types of waves:

Z * Longitudinal waves
Op; 2 > p
n; )
“ptp ptp

e Transverse waves:

Y :

2
n= — -
p+Dp;ny—n
2
Crij =
L %nj Op;  Op; : _
— , ifn; =n;.

For anisotropic stars there was no formalism to compute these sound speeds! Affects causality studies! 03



Einstein’s Elastic Equations

Turns out that the stress-energy tensor is exactly the same as the anisotropic fluid.

Same system of anisotropic TOV equations.

3
/ 9 ,  m+4nr’P, , .2
= = P =—(p+P)p —=(P,—P
m' =4nr‘p ¢ r(r— 2m) r = —(p+ P)¢ — —(Pr — P
Same as perfect-fluid Modified pressure equation
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Einstein’s Elastic Equations

Turns out that the stress-energy tensor is exactly the same as the anisotropic fluid.

Same system of anisotropic TOV equations.

m + 4nr° P 9
I_4 2 I: T P,:— _|_P ’__P_P
m Trip @ (r — 2m) ,=—(p+ )¢ T_( r — Py)
Same as perfect-fluid Modified pressure equation
Introduce our EoS: p= P(5, 77) More convenient combination of

“principal linear densities”
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Einstein’s Elastic Equations

Turns out that the stress-energy tensor is exactly the same as the anisotropic fluid.

Same system of anisotropic TOV equations.

3
/ 9 ,  m+4nr’P, , .2
= = P =—(p+P)p —=(P,—P
m' =4nr‘p ¢ r(r— 2m) r = —(p+ P)¢ — —(Pr — P
Same as perfect-fluid Modified pressure equation

Introduce our EoS: p = p(5, 77)

0= n1n§ “Number density of particles”

77(7“) = ng = 3 ' 0(u)u’du “Average number density of
r® Jo (1—2m(u)/u)'/? particles”
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Einstein’s Elastic Equations

Turns out that the stress-energy tensor is exactly the same as the anisotropic fluid.

Same system of anisotropic TOV equations.

P
’ 9 ,  m+4nr’ P, p’ , 2
= = = —(p+P)p — = (P, — P
m 47trep ¢ r(r — 2m) r (p ") , (P )
Same as perfect-fluid Modified pressure equation
Introduce our EoS: P = P(5, 77) Introduce the pressures:
0 = n1n§ “Number density of particles” P, = 535p — P
T 2 « . 3

77(7") _ ng _ % d(u)u“du - Avgrage,?umber density of Pt — Pr + —?757710

7> Jo (1 —2m(u)/u) particles 2
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Einstein’s Elastic Equations

Turns out that the stress-energy tensor is exactly the same as the anisotropic fluid.

Same system of anisotropic TOV equations.

P
’ 9 ,  m+4nr’ P, p’ , 2
= = = —(p+P)p — = (P, — P
m 47trep ¢ r(r — 2m) r (p ") , (P )
Same as perfect-fluid Modified pressure equation
Introduce our EoS: P = P(5, 77) Introduce the pressures:
0 = n1n§ “Number density of particles” P, = 535p — P
T 2 « . 3

77(7") _ ng _ % d(u)u“du - Avgrage,?umber density of Pt — Pr + —?757710

7> Jo (1 —2m(u)/u) particles 2

Everything depends on d ! The system is now closed! o4



Quadratic EoS

With the formalism set, the question reduces to prescribe an EoS for elastic matter.

Start with the simplest case: A polytropic with a quadratic elastic correction!

25



Quadratic EoS

With the formalism set, the question reduces to prescribe an EoS for elastic matter.

Start with the simplest case: A polytropic with a quadratic elastic correction!

Yesterday’s lesson: Fluid polytrope EoS.

p=op + n,cgl—i—l/n
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Quadratic EoS

With the formalism set, the question reduces to prescribe an EoS for elastic matter.

Start with the simplest case: A polytropic with a quadratic elastic correction!

Yesterday’s lesson: Fluid polytrope EoS.

p=op + n,cgl—i—l/n

Our elastic EOS: Fluid polytrope EoS + quadratic elastic correction.

p = Q_I_nlcgl—l—l/n_l_glcn(g_g)Z
~ ~ T
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Quadratic EoS

With the formalism set, the question reduces to prescribe an EoS for elastic matter.

Start with the simplest case: A polytropic with a quadratic elastic correction!

Yesterday’s lesson: Fluid polytrope EoS.

p=op + n,cgl—i—l/n

Our elastic EOS: Fluid polytrope EoS + quadratic elastic correction.

p =0+ nKe" + EK™ (s — 0)?
~ 0 ~ 1
Note:
These new variables make the system invariant with respect to the reference state.

25



Quadratic EoS - Results
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Quadratic EoS - Results

In spherical symmetry there are only 5 independent sound speeds!

Actually, we need to specify the form of one the sound speeds using a “natural choice”.

E=0 &=10" E=1/2
25T - 7 2.5 - - 7 2.5¢ - -
208 . { 2.0} 12.0}
{ 1.5} 1 1.5} ;
TOE o 10
dost —ost :
=t 0.0p——— : : ——— 0.0} . . . —
1 0.8 josf ]
{ 0.6} 1 0.6}
{ 0.4} 1 0.4}
1 0.2} 1 0.2}
0.0 - - - - 0.0 - - - -
00 02 04 06 08 00 02 04 06 08
r/R /R
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Affine constant sound speed EoS

From last lecture:

Constant sound speed EOS (affine): p =

28



Affine constant sound speed EoS

From last lecture:

—1 K
! Po +
g v—1

Using the expressions for the velocity we can find an expression for the density that
gives constant sound speeds.

Constant sound speed EQOS (affine): p = Q’Y
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Affine constant sound speed EoS

From last lecture:

—1 K
i pPo +
Y v—1

Using the expressions for the velocity we can find an expression for the density that
gives constant sound speeds.

Q’Y

Constant sound speed EOS (affine): p =

Op; s
However: We don’t have freedom to set all speeds m—p n; ’Z
constant. We set constant longitudinal wave speed! CLi = =
p+pi Pt

28



Affine constant sound speed EoS

From last lecture:

—1 K
1 PO+
g 71

Using the expressions for the velocity we can find an expression for the density that
gives constant sound speeds.

Q’Y

Constant sound speed EOS (affine): p =

Op; s
However: We don’t have freedom to set all speeds m—p n; ’Z
constant. We set constant longitudinal wave speed! CLi = =
p+pi Pt

Our elastic affine constant sound speed EoS:
wo.n) v 1-2—-9rv v 1/1-2v 1 y
L _7—1+(7(7—1)(1—V) 9)(5 1)+3(7(1_V)+9n>(?7 1)

() rern) ()

(339) -



Affine constant sound speed EoS

Realistic physical conditions on the matter restrict the parameter space.

Imaginary sound speeds (transverse waves) in
undeformed state

Imaginary sound speeds
(transverse waves), DEC

Region 11

0.5] Region |

0.0 E y=—1 Imaginary sound speeds
1.8 ® -1 (transverse waves), negative
~ B3 26 densities and pressures for
—0.5} v=1/2 large densities.
Z 6=0
—1.0F -
- Region III

0.0 0.2 0.4 0.6 0.8 1.0
Breaks elastic conditions in the undeformed state 9
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Affine constant sound speed EoS
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Maximum Compactness of Stars

With constant sound speed EoS we can look for bounds on

viable stars!

BlackHole: C' = 0.5

BuchdahtBound: C' = 4/9

Causal BuchdahlBound: (0 = ().364

Causal Buchdahl bound + Radial Stability:

C =0.354

Mass M

0.14
0.12
0.10
0.08F
0.06F
ook

0.02] )

R g
. -
- - -
| L1 1 I L1 1 1 I L1 1 1 | 11 1 I

0.00  0.05
Radius R
[Urbano & Vermaee, 1810.07137]

0.10 0.15 0.20 0.25 0.30

102

102
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Maximum Compactness of Stars

With constant sound speed EoS we can look for bounds on viable stars!

Black Hole: (' = (0.5

Buchdahl Bound: (' = 4/9 Superluminal wave propagation

Causal Buchdahl Bound (fluid): C' = (0.364 Causal &
Physically
Admissible

Maximum Compactness for Physically Admissible stars (elastic): Cgﬁx < 0.443

Causal (stable) Buchdahl bound (fluid): — ().
( ) ( ) C 0.354 Causal & Physically Admissible

PAS & Radially Stable
Bound (stable) for Phys. Admissible stars (elastic): C < ().384

max m~v
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Last lectures in a nutshell

Part 3

Compact objects in our Universe: Black Holes, Neutron Stars
and White Dwarfs.

Fluid models for compact objects: TOV equations.

Equation of state:

* Constant density;
* Polytropes;

* Constant sound speed;

Buchdahl limit and Causal Buchdahl limit;
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Last lectures in a nutshell

Part [l

Compact objects and Exotic Compact Objects;

Why we care about Exotic Compact Objects;

How to construct different models of ECOs:

“Artificial” models (wormholes, gravastars, etc...)

Anisotropic stars & Elastic Stars

32



Last lectures in a nutshell

Part [l

Anisotropic Stars:

 Constructed by solving a system of anisotropic TOV equations.

* Problems: Additional ad-hoc EoS; Spherically symmetry;

Elastic Stars:

* Similaridea but start from Lagrangian approach.
* Leadstothe same system of anisotropic TOV equations.
* Relasticity tells you how to obtain the pressures from the EoS. No need for additional ad-hoc EOS.

* Does not require necessarily spherically symmetry and is covariant naturally.

Key features:

Allows to construct ultracompact physically viable objects.
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Inspiral Phase:

 Multipole Moments; . .

Insplral Merger Ring-
down

e Tidal heating; f) () G.

* Tidal deformations;

Phenomenology
1.0 = Numerical relativity u 1
i Reconstructed (template) | I
Post-Merger: 0.30 0.35 0.40 0.45
Time (s)

 Quasinormal Modes;

e Gravitational Echoes;



Inspiral Merger Ring-
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Perturbation is governed by:

Where:
_82_?,0 Lo 827/) V=0 Vaxial = f(f(ﬁ;gl) +(1—s )2:;/[)

072
Vpolar — 2f

qz(q+ 1)r3 + 3c]2Mr2 +9M2(qr+M)
r3(qr+3M)? ’
[Regge, Wheeler, 1957 & Zerilli, 1970]



Time independent version:
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Properties of the BH QNMs:

* |sospectrality.
* Imaginary part becomes

increasingly larger with n.

* High overtones have quick
damping time.
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QNMs
of an ECO

0.001F

Properties of the ECO QNMs:

* Breaking of isospectrality;
[Chandrasekar, Detweiler, 75]

~ L
3
2 10—6_
|
_ / e Black hole
0% 7 _ECO axial
S ECO polar
005 010 015 020 025 030 035
Mwp [Maggio, Pani, Raposo, 2021]

* |n the BH limit the ECO QNMs are
low-frequency and long-lived.
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[Maggio, Pani, Raposo, 2021]

BH case:

* Perturbation interacts with * Perturbation splits into two

potential maximum (close to  contributions.
photonsphere). * Reflected to infinity.

* Transmitted towards horizon.
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BH case:

* Ingoing wave —
absorbed at horizon.

Time-dependent | Bes
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ECO case:
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BH case:

* Ingoing wave —
absorbed at horizon.

Time-dependent | Bes

0.15F
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- d ECO case:
0.10_- o an & . . f . . d
8 outgoing 2 Mix of ingoing an
0.05 z = outgoing wave.
O * Waves are reflected
0.00l between the potential

0 —10 o o T wall at surface and at
r/M potential maximum.
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1.0 ”
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0.5} ” ---- Black Hole
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Prompt Ringdown:

e Same signal, BH and ECO. Why? ¢ Where do you observe the QNMs in this
case?



Prompt Ringdown:

* The ringdown has no
information on the
boundary/surface.

e The information on the

surface appears at later times.
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0.4t — Unphysical
—— Physically Viable
Physically Viable + Stable
~ 0.3
=
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Echoes 0.k . . -
0 1 2 3 4 5
Ultracompact oM

Stars

The potential barrier is not at surface but within the

compact object (centrifugal barrier);

Perturbation takes more time traveling within the
star than outside. Much longer time between
echoes.
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Multipole Moments
And
Tidal Effects




In Newtonian Gravity: In GR:

oo ¢ e ey . . . .

My, | 4n More complex definition, but similar idea (in

P(x) = PZ:O Z[ Y Yim (60,0) . ACMC coordinates)
r=um=—~«

Multipole

Moments




Multipole

Moments

In Newtonian Gravity:

o /
My, 4w
P(x) = Yim (0,0),
W=L ¥ e a0

Black Holes have no hair...

MBH 1 isBH — pptH1 (i)

Axisymmetric & Equatorially Symmetric

In GR:

More complex definition, but similar idea (in
ACMC coordinates)

... but ECOs can
MECO — MPH 1+ SM,,,

SECO = S]EH + 5S€m

Im



In Newtonian Gravity:

o /
My, 4w
P(x) = Yim (0,0),
W=L ¥ e a0

Black Holes have no hair...

MBH 1 isBH — pptH1 (i)

Axisymmetric & Equatorially Symmetric

In GR:

More complex definition, but similar idea (in
ACMC coordinates)

... but ECOs can
ME}?O :MEH+3M€m

SECO = SgBH + 6Sfm

{m

MUltipOle Nonspherical ECOs?

Moments Microstate geometries

Multi-center solutions
motivated by, string-theory

e

[Raposo+, 2007.01743; Bena, Mayerson, 2006.10750]
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Multipolar boson stars

[Herdeiro+,2008.10608]

Prolate Proca stars
[Herdeiro+,2311.14800]

[Etevaldo’s talk]

Fundamental state of
Proca star is !



Schwarzschlld

2 0 P )
(0) 4+ Z e"h| (n) il 0  fHFPR 0 0
§ 0 0 r2K™P, 0
\ hptp, 0 0 r’sin?K™P, |
Soft ECO condition: K12 o 1/M2

Curvature at surface like that of horizon.

The multipolar deviations vanish logarithmically (or faster)

My ~ a/log A



Microstate geometries

Multi-center solutions motivated by string-
theory

ds® =

3
—e2V (dt +w)* + e 2V Z dx?,
i=1

Where U is a combination of:

N y N ¢
vV = ot _ Ia:
vo+2m . Li=tloy+ ) -
a=1 a=1
N }GI N m
K' = K o M = —
0"‘;7,& ) m0+z

Since this are harmonic functions, metric is in
ACMC form:

Multipolar Structure of Fuzzball [Raposo+, 2007.01743; Bena, Mayerson, 2006.10750]

5Mgm ~ a,L"’



The multipole moments affect the phase of the gravitational wave (inspiral).

75 (””ZMS) +m1M§2))
64 (m1m2)2

The dominant term appears at 2PN order. yy_, =

< |

However: Correlated with the spins (not measured accurately so far).

For LISA: EMRI are a gold signal for multipolar tests. Can constrain a large

®
Multipole set of multipoles!
Moments | :
1004 ==* g=12 I P
] i 10 ’,z
IR SR q:10 = 100: _______ -
3. 3.
< 10_1 ,l,‘ < *
'0 - —1
—"’f’:’. 1 +* . ’
St [ SR SELL M
10° 106 107 109 106 10’
Total Mass (M) [Kastha+, 1905.07277]

A detection of EMRI can potentially allow to constrain M, up to one part in 10*



Tidal Love

numbers

For BHSs:
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For BHSs:
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For BHSs:

M/R — 0.5 Inspiral Merger S(i)rl\(_’:jr;
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For Hard ECOs

100 ._""""""""'"""I"_.
—lgwnrmhnzle _ '
* Tidal Love number vanishes | — T
Ogar|thm|ca||y |n the BH ||m|t_ 10,.....______..gmvastar ................................................

—1
Tidal Love ki ~ log =0

numbers: e The Love number can =<

ECOs be converted into a
distance of ECO surface
from horizon!
§ ~ 2Me 1/k2
* Possible to probe Planckian ~40 - 20 -10 O 10

corrections to the horizon!

ks ~ 1072 = § ~ 10 %3cm log ,o[6/cm ]



Tidal Love
numbers:
ECOs

For Ultracompact Stars:

 Tidal Love number vanishes .
polynomially in the BH limit.

ko ~ 0%
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For star-like ECOs it may be
challenging to measure Planckian
corrections to the horizon
structure.



Tidal effects add linearly to the
waveform phase.

R~ Aei(?,bpp +¢TD)

Love i =
numberS in 0.30 T?ﬁ:(s) 0.40 0.45
the /
waveform (743 11\ (mrf)*?
¢ijl (336+ T 3 4.
Newtonian 1P< \ etc

625 10
Yrp = —Yn—A (2) 5PN contribution!
m C

N

Average tidal deformability



Detectability

[Maselli+, 2018]
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