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£-Boson Stars

¢ -BS are solutions to the static, spherically symmetric Einstein Klein-Gordon system for a collection of an arbitrary

odd number N of complex scalar fields with no self-interactions.

Each non-interacting scalar field ®, / = 1,...,N, of mass u, is excited in an appropriate way consistent with the spherical

symmetry of the spacetime.

N
The stress energy-momentum tensor associated with such a collection of scalar fields is given by Tog = Z Tfjg ,
i=1

Tc(jg = (Va®i Vg®; + V®; Vad) +g45 (ng)iva(b’; + %,LLQ\(I%\Q) .

Where * denotes the complex conjugate, and V is the covariant derivative with respect to the spacetime metric g.

The conservation of the stress energy tensor implies each field must obey the Klein-Gordon Equation

(\/u\/u — ,LLQ)(I)Z = (.



The model

We assume that each field has a harmonic time dependence, of the form
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Whereas the spacetime element of line is
ds® = —a’dt* + ~2dr® + r2dQ°,
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In order to preserve the spherical symmetry of the configuration, all the fields must
have the same amplitude.



Equilibrium configurations

For a real frequency w, this system provides a nonlinear eigenvalue problem for the metric functions and the scalar
field amplitude.

For the case of N=1, i.e. £ =0, these equations reduce to the ones describing static mini - boson stars.

The nonlinear system has to be completed by giving boundary conditions. We assume the scalar field vanishes at

infinity, thus the spacetime is asymptotically flat.

The solution of the system can be found by means of a shooting algorithm using w as a shooting parameter.



Scaling, mass and size

The system is invariant under transformations of the form
_- ._ l
= A, W Aw, T+ A br up Moy, where — Ug := Yy /T
We characterize the total mass of an £-boson star in terms of the asymptotic value of the Misner-Sharp mass function,

which is approximated by evaluating the metric coefficient y(r) at the last grid point of the computational domain

F'max |
M =~ 1
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£-Boson Stars extend to infinity and thus do not posses a surface at a finite radius, one can however, define an effective

radius, R(99), as the areal radius of the object which contains 99% of the total mass.

For a given angular momentum number £, the equilibrium configurations are labeled by a continuous parameter

corresponding to the field amplitude.



Equilibrium configurations
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For a given value of £, the mass M of the equilibrium configurations as a function of w. As £ increases the
configurations become more compact.
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Configuration| M | R(99%) | w |M/R(99%)
A (£ =0) 0.63 7.89 0.854 0.08
. Compactness
B(({=1) 1.18 12.75 0.836 0.09
C (¢ =2) 1.72 15.35 0.832 0.11
D (¢ =3) 2.25 |7.22 0.820 0.13
E (¢ =4) 2.78 19.80 0.819 0.14
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For £ = 0 the maximum value of the energy density (measured by Eulerian observers) is at the origin, whereas for £ > 0 the
structure of the stars is like a shell




Stability with respect to radial perturbations

For each value of 2, the configuration of maximum mass separates the parameter space into stable and
unstable regions.

We perform non-linear evolutions of the coupled EKG systems, to determine the stability properties of the
equilibrium states

Stable configurations, when perturbed, oscillate around the unperturbed solution and very slowly return to a
stationary configuration.

Unstable configurations, in contrast, can have three different final states:

a) Collapse to a black hole,

b) Migration to the stable branch, or

c) Dissipation to infinity.



Perturbing the equilibrium states

In order to solve the field equations, we consider a spherically symmetric spacetime with a line element given by

ds® = —a?dt* + * (Adr® + r* BdQ?) |

and the fields @ (t,7,9,¢) = due(t, )Y (9, @),

The KG equation takes the form
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We use for our dynamical simulations a spherically symmetric version of the Baumgarte-Shapiro-Shibata-Nakamura formulation
with matter sources given by
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Initial data perturbations

In order to find the perturbed initial data we choose a value of £ and solve for the unperturbed configuration.

Having found the metric functions, the amplitude of the scalar field and the frequency we add small perturbations to the field

and its time derivative and solve again the Hamiltonian constraint to find the modified metric radial function

We consider perturbations in the field of the form

Or = Yo + 0PR , ¢r =0pr ,
IIr = 4llRr , II; = (IIr)o + 611 ,
Useful quantities are density of energy and density of bosons where the conserved current is
1| 2 x| | o A+ 1) 12 1
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Initial data perturbations

We consider three different types of perturbations

Type |. Internal perturbations such that the boson density changes
dpor # 0 and oll; = 0.

Type |l Internal perturbations such that the boson density is conserved to linear order and can increase or decrease

the total mass of the star.
51—[[ o —(w/ao) 5(,9}2.

Type lll. External perturbations such that the boson density is conserved to linear order, but always increases the mass

oll; = +(w/ap) dpr,

In all the simulations we consider perturbations of the form

Son(r) = € exp [~(r — r0)/0?] |



Diagnostics

The total number of particles

Np := /pB“,l/erdeQp

The binding energy is a measure of the difference between the total mass energy of the system, given by the ADM

mass M, and the rest mass of the bosons, which can be simply defined as pNB, with u the mass of the scalar field

U:=M—uNpg .

If the binding energy is negative, we should have a bound gravitational system, while if it is positive the system is
unbound.

The formation of a black hole is monitored via the apparent horizon with mass

Ap

My = 4] —%
H 167



Representative cases £ = 2
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Unstable configuration B (Migration)

Minimum value of lapse function o
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Unstable configuration C (Dispersion)
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Minimum value of lapse function o

Unstable configuration D (BH-Formation)

Maximum value of the radial metric A

1

|

0

2]

50

100 150

time

.48
.46
.44

1.42

.38

1.36

1.34

.32

40C

35C

30C

250

20C

15C

10C

o0

C

Apparent horizon mass

| l

150 200

|

l

100

time

I

150

20C



Final states

The region 0 < g < ¢! corresponds to bound stable
configurations.

For all types of (small) perturbations studied, these
configurations oscillate around the stationary solution.

The region o} < g < f corresponds to unstable but
bound configurations that, depending on the specific type
of perturbation, can either collapse to form a black hole
or “migrate” to the stable branch.

This migration to the stable branch is achieved by ejecting
excess scalar field to infinity.

The region ®o > 0y corresponds to unstable and unbound
solutions that, depending on the specific type of perturbation,
can either collapse to a black hole or dissipate to infinity

cpév" correspond to the maximum mass.

Q,Qg for which the binding energy is zero.

3

2.9

0.5

|
Minimum

binding

‘

—

=W = O
|

v

2]



Stability with respect to non-radial perturbations

We test the stability of £ -BSs against non-spherical perturbations by performing numerical evolutions of the
Einstein-Klein-Gordon system, in 3D.

We have considered non-spherical perturbations on the energy density of the form

_ s o -
e =y
P = Po 1+n( )
_ RSy ).

We monitor the deformation parameters Ny i= Iz — 122 N, 1= Low — 1yy

oz + 1, ’ I, + ]yy ’

where I, = /p(y2 +2%)dV, I, = /P(ﬂ?2 +2%)dv
(

Those configurations known to be unstable under spherical perturbations, are also unstable under more
general perturbations.



Stability with respect to non-radial perturbations

No growing modes have been measured in our simulations.

In this sense boson stars are stable against non-spherical perturbations.

For the timescales explored, the £ -BS belonging to the spherical stable branch do not exhibit

measurable growing modes.

We find evidence of zero modes; that is, non-spherical perturbations that neither grow nor decay.



Configurations with large £

Besides the total mass and radii, the density and compactness are good characteristics to describe

the configurations. We further also use the pressure.
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Configurations with large £

The circles denote the first appearance of light rings (LR), while the triangles denote the first
appearance of an ISCO-OSCO pair and, hence, the existence of unstable orbits (UOs).
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Configurations with large £

The total mass and radius grow linearly with £. The compactness remain bounded, much below the
Buchdal’s limit
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£t =0

Configurations with large £

The radial and tangential pressure is different in boson stars. The anisotropy grows with £
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Configurations with large £

As £ Increases, the "shells” become larger, as well as thinner relative to their radius, in such a way

that the tangential pressure has to become larger relative to the radial one in order to support the
configuration.
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Configurations with large £
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Configurations in the limit of large £

By rescaling the fields (M, a, y, ¢) and by shifting and rescaling the radial coordinate rin an
appropriate way (which is largely motivated by the empirical numerical data and trial-and-error) one

obtains a set of effective field equations which can be solved separately in the limit £ — oo
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Configurations in the limit of large £
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Semiclassical approach

The semiclassical Einstein- Klein-Gordon system for a single real quantum scalar field whose
state describes the excitation of N identical particles, each one corresponding to a given energy

level, can be reduced to the Einstein- Klein-Gordon system for N complex classical scalar fields.

In the spherically symmetric and static scenario, where energy levels are labeled by quantum
numbers n, £ and m and when all particles are accommodated in the ground state n = £ = m = 0,

one recovers the standard static boson star solutions, that can be excited if n /= 0.

For the case where all particles have fixed radial and total angular momentum numbers n and ¢,
but are homogeneously distributed with respect to their magnetic number m, one obtains the {-
boson stars, whereas when £ = m = 0 and n takes multiple values, multi-state boson star

solutions are obtained.



Configurations with large £

The starting point are Einstein’s equations sourced by the expectation value of the stress energy-
momentum tensor.
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b O a)

Where Iin our case
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For a static an spherically symmetric spacetime

ds® = —a*(Z)dt* + v;; (T)dz dx?,



Configurations with large £

Besides the total mass and radii, the density and compactness are good characteristics to describe
the configurations. We further also use the pressure.
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Choosing the states
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Boson stars family

We end up with a system of equations that reduces to the system on N classical complex scalar
fields .
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Boson stars family

¢ - Boson stars correspond to a particular excitation of a single real qguantum spin zero field that

describes a selfgravitating system of (2£+1)Noem identical quantum particles.

Name n
_ > Multi-¢ multi-state boson star ni,nas,...
> Multi-state /-boson star i
—— Multi-state boson star nin;
|| Boson star n1
— ¢-Boson star ni
. b— Multi-¢ boson star n1




Boson stars family
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Conclusions

* In £-boson stars as the value of £ grows, one finds more massive and compact stable objects.

* Stable configurations, when perturbed, oscillate around the unperturbed solution and seem to very slowly

return to a stationary configuration.

* Unstable configurations, can have three different final states: collapse to a black hole, migration to the

stable branch, or explosion (dissipation) to infinity.

* As £ grows, so does the object and also the almost empty central region, tending to form shells of scalar
fields where the size of the almost empty central region is much larger than the size of the region where the

scalar field is mainly distributed.

* The mass of the solutions that divide the stable and the unstable branches, as we
£, but in such a way that the compactness tends to a finite value. In the £ = o lim
to about 0.23 for the maximum mass configuration; that is, about half the Buchdanhl

| as their size, grows with

it the compactness tends
limit.

* By using the semiclassical approach we showed that {-boson stars are just a set of a larger family of

solutions of the Einstein-Klein Gordon system in spherical symmetry.



Thank you, It Is always a pleasure for me to come
to Belém



