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Lecture 2
Einstein’s equations 

and Numerical Relativity 
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The dynamics of the gravitational field is described by Einstein’s 
field equations:

These equations relate the spacetime geometry (left-hand side)  
with the distribution of matter and energy (right-hand side): 
“Matter tells spacetime how to curve, and spacetime tells matter 
how to move.”

Einstein’s equations are a system of 10 nonlinear, coupled, partial 
differential equations in 4 dimensions. 

When written with respect to a general coordinate system they may 
contain hundreds of terms ... 

Einstein’s equations and Numerical Relativity

Amazonian High Studies School in Theoretical Physics, Aug 5-9 2019, Federal U. of Pará, Brazil



There’s plenty of exact solutions of Einstein’s equations, but very 
few of such solutions have astrophysical significance. Due 
to their complexity exact solutions of such equations have only 
been found when adopting simplifying symmetries:

• Schwarzschild solution (static and spherically symmetric)
• Kerr solution (stationary and axisymmetric)
• Cosmological solution (isotropic, homogeneous, or both)

When studying more complex systems with astrophysical 
significance  (gravitational collapse, mergers of compact binaries) 
unfeasible to solve Einstein’s equations in an exact way.

Numerical Relativity emerged in the mid 1960s from the need 
to study such kind of problems, aiming at trying to solve the field 
equations with supercomputers using numerical approximations. 

NR’s current main goal: provide templates of the gravitational 
produced in astrophysical sources to assist detection with current 
and next generation detectors (LIGO/VIRGO/KAGRA/ET/CE).
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Procedure to derive the 3+1 equations
1. Foliation of the 4-dim spacetime with 3-dim spatial 
hypersurfaces defined by a scalar function, the temporal 
coordinate. This geometrical construction defines a unit 
normal vector to the hypersurfaces. 

2. Split of 4-dim spacetime tensors into their temporal 
and spatial parts, using the normal vector and the spatial 
metric. 

3. Re-writing of Einstein’s equations using such split 
tensors. 

4. Choice of a natural direction for the time evolution. 

5. Choice of a coordinate basis to express all equations.
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Einstein’s equations in 3+1 form
Using the projection operator and the normal vector, Einstein’s 
equations can be separated in three groups:

 Normal projection (1 equation; energy or Hamiltonian constraint)

 Mixed projections (3 equations; momentum constraints)

 Projection onto the hypersurface (6 equations; evolution of the 
extrinsic curvature)

n↵n�(G↵� � 8⇡T↵�) = 0

P [n↵(G↵� � 8⇡T↵�)] = 0

P (G↵� � 8⇡T↵�) = 0



First step: Spacetime foliation
Spacetime: differentiable manifold      with a Lorentzian metric                
of signature +2, 

where       are the components of       on the basis 

gµ⌫M
(M, g)

Such manifold is covered by a coordinate chart        with{xµ} µ = 0, · · · , 3

A coordinate basis of the tangent space of      en   M p, TpM, is given
@µ ⌘ @/@x

µ

A vector                  is expressed as V 2 TpM V = V µ@µ

V µ V @µ

A 1-form of the cotangent space                  is an object that is 
dual to a vector, that is, it leads to a number when acting on a 
vector. The simplest example is the differential of a function

⌦ 2 T ⇤
pM

df = @µf dx

µ {dxµ} natural basis in T ⇤
pM

Therefore, an arbitrary 1-form can be written as ⌦ = ⌦µdx
µ

by
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Foliation of spacetime with three-dimensional spatial 
hypersurfaces defined by a scalar function. Such function is 
the temporal coordinate t, as we shall see.

We define therefore the 1-form

such that

this defines the lapse function that is strictly 
positive for spatial hypersurfaces

|⌦|2 = gµ⌫rµtr⌫t ⌘ �↵�2
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The lapse function allows to do two important things:

1. define the normal unit vector to the hypersurface⌃

nµ ⌘ �↵gµ⌫⌦⌫ = �↵gµ⌫r⌫t

with nµnµ = �1

�µ⌫ ⌘ gµ⌫ + nµn⌫

the negative sign is chosen 
so that the normal vector 
points in the direction of 
increasing t (quiz: prove it!)
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2. define the spatial metric (induced)



Second step: split 4-dim tensors
The normal vector and the spatial metric are two useful tools to 
split any 4-tensor in a purely spatial (on the hypersurface) and a 
purely temporal part (orthogonal to     and along    ).

The spatial part of a tensor is obtained by contraction with the 
spatial projector operator: 

while the temporal part is obtained by contraction with the 
temporal projector operator: 

with the two projectors being obviously orthogonal: 

⌃ n

�µ
⌫ = gµ↵�↵⌫ = gµ⌫ + nµn⌫ = �µ⌫ + nµn⌫

Nµ
⌫ = �nµn⌫

�⌫
µN

µ
⌫ = 0

(quiz: prove it!)
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This allows to define the covariant 3-derivative of a spatial tensor. 
It is simply the projection on to the hypersurface of all the indices 
of the covariant 4-derivative

D↵T
�
� = �⇢

↵�
�
��

⌧
�r⇢T

�
⌧

compatible with the spatial metric: D↵�
�
� = 0

All the algebra of 4-tensors can thus be immediately applied on 
the spatial hypersurface, so that the covariant 3-derivative can 
be expressed in terms of the 3-dim connection coefficients 
(Christoffel symbols)

�↵
�� =

1

2
�↵µ(�µ�,� + �µ�,� � ���,µ)

�µ�,� ⌘ @��µ�Notation:
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Likewise, the 3-dim Riemann tensor (curvature) associated with         
is defined through the double covariant 3-derivative of any spatial 
vector     , that is

�

W

2D[↵D�]W� = Rµ
�↵�Wµ

where Rµ
�↵�nµ = 0

and

2T[↵�] = T↵� � T�↵

Remember that, explicitely, the 3-dim Riemann tensor can be 
expressed in terms of the 3-dim connection coefficients: 

R↵
��� = �↵

��,� � �↵
��,� + �µ

���
↵
µ� � �µ

���
↵
µ�

Moreover, the contractions of the 3-dim Riemann tensor, that is, 
the Ricci tensor and the Ricci scalar, are given by: 

R↵� = R�
↵�� R = R�

�

(Ricci identity)
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Important not to confuse the 3-dim Riemann tensor         with 
the corresponding 4-dim tensor

Rµ
�↵�

(4)Rµ
�↵�

Rµ
�↵�

is purely spatial (spatial derivatives of the spatial 
metric      )�

(4)Rµ
�↵�

is a 4-dim object that also contains temporal 
derivatives of the 4-metric g

The information present in              and absent in             can be 
found in another spatial tensor, the extrinsic curvature.

(4)Rµ
�↵� Rµ

�↵�

Intrinsic and extrinsic curvature of spatial hypersurfaces: 
Intrinsic curvature given by the 3-dimensional Riemann tensor 
defined in terms of the 3-metric       . 
Extrinsic curvature       measures the change of the vector normal 
to the hypersurface as it is parallel-transported from one point in 
the hypersurface to another.

�ij
Kij
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A common definition of the extrinsic curvature is in terms of the 
Lie derivative:

K↵� = �1

2
Ln�↵�

The Lie derivative can be seen as a generalization of the 
directional derivative. For a generic tensor of rank        it is given 
by:

✓
1
1

◆

Geometrically the extrinsic curvature  
measures the change of the normal 
vector  to the hypersurface as this 
vector is parallel-transported from 
one point of the hypersurface to 
another. 

Therefore, it measures how the 3-dim hypersurface 
“curves” itself w.r.t. to the 4-dim spacetime. 
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Third step: split of Einstein’s equations
Next, we need to split Einstein’s equations in their spatial and 
temporal parts. 

(4)Gµ⌫ ⌘ (4)Rµ⌫ � 1

2
(4)Rgµ⌫ = 8⇡Tµ⌫

To do so, we need to use a few identities:

1. Gauss-Codazzi equations: split of the 4-dim Riemann tensor 
projecting all of its indices on to the hypersurface

R↵��� +K↵�K�� �K↵�K�� = �µ
↵�

⌫
��

⇢
��

�
�
(4)Rµ⌫⇢�

2. Codazzi-Mainardi equations: three spatial and one temporal 
projections of the 4-dim Riemann tensor

D↵K�� �D�K↵� = �⇢
��

µ
↵�

⌫
�n

� (4)R⇢µ⌫�

Dem.- See Wald, General Relativity, University of Chicago Press (1984)
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We also need to analyse the projections of the stress-energy 
tensor, as they are relevant when considering the r.h.s. of 
Einstein’s equations. 

For a perfect fluid, the stress-energy tensor is given by: 

Tµ⌫ = (e+ p)uµu⌫ + p gµ⌫ = ⇢huµu⌫ + p gµ⌫

where              and      are, respectively the energy density, the 
pressure, the specific enthalpy and the rest-mass density of the 
fluid, 

e, p, h ⇢

As                  (the two vectors are parallel and unitary)  the 
density of energy measure by the normal observers is given by 
the doble temporal projection

nµuµ = 1

e = nµn⌫Tµ⌫

Likewise, the momentum density (the mass current) is given by 
the mixed spatial and temporal projections

jµ = ��↵
µn

�T↵� = �(e+ p)(uµ + nµ)

(quiz: prove it!)

(quiz: prove it!)

⇢h = e+ p
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Hamiltonian constraint equation
First, we take a double temporal projection of the l.h.s. of 
Einstein’s equations, to obtain

2nµn⌫ (4)Gµ⌫ = R+K2 �Kµ⌫K
µ⌫

Doing the same for the r.h.s., and using the Gauss-Codazzi 
equations contracted twice with the spatial metric, and using the 
definition of the energy density, we obtain (after some algebra) 
the Hamiltonian constraint equation:

R+K2 �Kµ⌫K
µ⌫ = 16⇡e

This is an elliptic equation (and therefore contains no temporal 
derivatives) that must be satisfied everywhere on the spatial 
hypersurface ⌃
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Momentum constraint equation
Likewise, with a mixed spatial-temporal projection of the l.h.s. of 
Einstein’s equations we obtain

so that, using the Codazzi-Mainardi in the r.h.s. of this equation, 
we arrive to

D⌫K
⌫
µ �DµK = 8⇡jµ

which are three elliptic equations.

�↵µn⌫ (4)Gµ⌫ = �↵µn⌫Rµ⌫

�↵µn⌫ (4)Gµ⌫ = D↵K �DµK
↵µ

On the other hand, the same contraction in the r.h.s. of Einstein’s 
equations leads to

�↵µn⌫Tµ⌫ = �j↵

Both sides are equal, which leads to the momentum constraint 
equation: 
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Fourth step: choice of direction for time evolution

This is so because       is not dual to the 1-form        of the 
hypersurface, that is

nµ⌦µ = nµrµt = �↵⌦µ⌦µ =
1

↵
6= 1

Evolution equations to describe how       and        evolve in time, 
form one spatial hypersurface to the next, can be obtained from 
the definition of the extrinsic curvature and the Ricci equations 
(two spatial and two temporal projections of the 4-dim Riemann 
tensor): 

�µ⌫ Kµ⌫

Ln K↵� = n�n��µ
↵�

⌫
�

(4)R⌫�µ� � 1

↵
D↵D�↵�K�

�K↵�

K↵� = �1

2
Ln�↵�

However, the Lie derivative along the unit normal is not the 
natural time derivative orthogonal to the hypersurfaces.

n↵ ⌦↵

Amazonian High Studies School in Theoretical Physics, Aug 5-9 2019, Federal U. of Pará, Brazil



Therefore, it is necessary to find a new vector along which to 
carry out the temporal evolution, and dual to the hypersurface 1-
form. Such a vector can be easily defined as: 

tµ ⌘ ↵nµ + �µ

where       is any “shift” spatial vector. �µ

Clearly these two objects are now dual to each other: 

tµ⌦µ = ↵nµ⌦µ + �µ⌦µ =
↵

↵
= 1

Therefore, the lapse function and the shift vector jointly 
determine the evolution of the coordinates from one hypersurface 
to the next. 

The lapse function determines the amount of elapsed proper time 
between two consecutive hypersurfaces along the unit normal, 
while the shift vector determines the amount by which the spatial 
coordinates have shifted w.r.t. to the normal vector.
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With this definition let us consider again the Lie derivative along 
the unit normal vector      . SinceLn

↵Ln = Lt � L�

the definition of extrinsic curvature

K↵� = �1

2
Ln�↵�

Lt�µ⌫ = �2↵Kµ⌫ + L��µ⌫

This expression shows that the extrinsic curvature is a measure 
of the rate of change of the spatial metric 

Kµ⌫ / � 1

↵
Lt�µ⌫

The previous equation is a definition and not one of Einstein’s 
equations, something that is usually confused. 

can be rewritten as
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The evolution part of Einstein’s equations
We can now obtain the remaining part of the 3+1 split, that is, 
the part of Einstein’s equations that describes their time 
evolution.

As for the constraint equations, we need appropriate projections 
of both sides of Einstein’s equations, in particular two spatial 
projections, that is: 

�µ
↵�

⌫
�

(4)Gµ⌫ = 8⇡Sµ⌫ ⌘ 8⇡�µ
↵�

⌫
�Tµ⌫

Using the Ricci equations and after some algebra, we obtain:

where S ⌘ Sµ
µ

LtKµ⌫ = � DµD⌫↵+ ↵((3)Rµ⌫ � 2K�
⌫Kµ� +KKµ⌫)

� 8⇡↵(Sµ⌫ � 1

2
�µ⌫(S � e)) + L�Kµ⌫
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Fifth step: choice of a coordinate basis
So far we have dealt with tensor equations and we have not 
specified a coordinate basis with unit vectors 

Doing this allows us to simplify the equations and to highlight the 
spatial nature of     and    

ej

K�

In our case the choice is very simple as we want that: 

1. three of the vectors must be purely spatial, that is

nµ(ej)
µ = 0 ! (e1)

µ = (0, 1, 0, 0) for instance

2. the fourth vector has to point in the direction of vector 

(e0)
µ = tµ = (1, 0, 0, 0)

t
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As a result

Lt = @t

that is, the Lie derivative along    is a simple partial derivative.     t

nj = nµ(ej)
µ = 0 but n0 6= 0

that is, the spatial covariant components of a temporal vector 
vanish; only the temporal component is not zero.

nµ�
µ = �0n0 = 0 ) �0 = 0 ) �µ = (0,�j)

that is, the temporal contravariant component of a spatial vector 
vanishes; only the spatial components are not zero. 

With all of this and keeping in mind that nµn
µ = �1 we obtain

nµ =
1

↵
(1,��i) nµ = (�↵, 0, 0, 0)

1.

2.

3.

(quiz: prove it!)
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It can also be shown that the contravariant components of the 
metric in the 3+1 split are: 

gµ⌫ =

0

@
�1/↵2 �i/↵2

�i/↵2 �ij � �i�j/↵2

1

A

while the covariant components are

gµ⌫ =

0

@
�↵2 + �i�i �i

�i �ij

1

A

Note that                    , i.e. the two matrices are inverse of one 
another and can be used to raise and lower indices of spatial 
tensors. 

�ik�kj = �ij
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We can now have a more intuitive interpretation of the lapse 
function, the shift vector, and the spatial metric. Using the 
expression of the covariant 4-dim metric, we can write the line 
element as follows: 

ds

2 = gµ⌫dx
µ
dx

⌫ = �(↵2 � �

i
�i)dt

2 + 2�idx
i
dt+ �ijdx

i
dx

j

Therefore:

the lapse function measures 
the proper time between 
two adjacent hipersurfaces 

d⌧

2 = �↵

2(t, xj)dt2

the shift vector relates the 
spatial coordinates between two 
adjacent hypersurfaces

x

i
t0+�t = x

i
t0 � �

i(t, xj)dt

the spatial metric measures  
distances between points 
on each hypersurface

dl

2 = �ijdx
i
dx

j
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Summary: 3+1 ADM system

@tKij = � DiDj↵+ ↵(Rij � 2KikK
kj +KKij)

� 8⇡↵(Rij �
1

2
�ij(S � e)) + L�Kij)

@t�ij = �2↵Kij + L��ij

R+K2 �KijK
ij = 16⇡e

DjK
j
i �DiK = 8⇡ji

These 6+6+3+1 equations are known as ADM equations. In 
practice only the evolution equations are solved and the 
constraint equations are used to monitor the quality of the 
numerical solution. 

Amazonian High Studies School in Theoretical Physics, Aug 5-9 2019, Federal U. of Pará, Brazil



Cauchy (Initial Value) Problem

•  Specify the initial data       ,        at t=0 
subjected to the constraint equations.

•  Specify the coordinates through the (freely 
specifiable) lapse function     and shift vector       

• Evolve the initial data to the next time step using 
the Einstein’s equations and the definition of the 
extrinsic curvature

�ij Kij

↵ �i

Kij

Original references: 
Lichnerowicz (1944); Choquet-Bruhat (1962); Arnowitt, Deser & 
Misner (1962); York (1979)

The ADM equations constitute a Cauchy problem where the PDEs 
are solved given certain initial conditions on the initial 
hypersurface.
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Nowadays, the ADM equations are hardly used in Numerical 
Relativity.

While the ADM equations have no peculiarities from a 
mathematical point of view, the numerical experience with those 
equations has shown that they are not suitable for a numerical 
approach.

In particular, it has been shown that the ADM system is weakly 
hyperbolic and, therefore, constitutes an ill-posed Cauchy (IVP) 
problem.

In practice, the ADM system is prone to the appearance of 
numerical instabilities that destroy the solution (exponentially 
unstable growing modes). 

However, the stability properties of numerical implementations 
can be improved by introducing new auxiliary functions and 
rewriting the ADM equations in terms of those new functions. 
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Let us consider a first-order system of evolution equations: 

The concept of hyperbolicity

@tu+M i@iu = s(u)

where       are           matrices and           M i n⇥ n i = 1, 2, 3

Let us consider an arbitrary unit vector      and let us build the 
matrix                     the so-called system’s principal symbol. 

ni

P = M ini

The system can be classified as:

- Strongly hyperbolic: if    has real eigenvalues and there exists a 
complete set of eigenvectors for any     .

- Weakly hyperbolic: if    has real eigenvalues but there does not 
exist a complete set of eigenvectors. 

- Symmetric hyperbolic: if    is a symmetric matrix regardless 
of     .  They are, therefore, strongly hyperbolic. 

Only strong and symmetric hyperbolic systems are well-posed. 
Eigenvalues represent propagation speeds of the system.

ni

ni

P

P

P
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ADM vs Maxwell
The ADM equations look rather cryptic and complicated. The 
analogy between these equations and Maxwell’s equations helps 
to better understand the ADM system. 

In electromagnetism, the relevant quantities are the electric and 
magnetic fields, the charge density, and the charge current 
density, that is:  E,B, ⇢e,J

Maxwell’s equations also split into evolution equations

@tE = r⇥B� 4⇡J

@tB = �r⇥E

and constraint equations

r ·E = 4⇡⇢e

r ·B = 0

, @tEi = ✏ijkD
jBk � 4⇡Ji

@tBi = �✏ijkD
jEk

@iE
i = 4⇡⇢e

@iB
i = 0

,

,

,

[Ampere]

[Faraday]

[Gauss]
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For Maxwell’s equations it is also possible to prove that if the 
constraint equations are satisfied at the initial time, then the 
evolution equations preserve that property. 

To highlight even more the similarities, let us introduce the vector 
potential

Aµ = (�, Ai) Bi = ✏ijkD
jAksuch that

@t�ij = �2↵Kij + L��ij

@tKij = � DiDj↵+ ↵(Rij � 2KikK
kj +KKij)

� 8⇡↵(Rij �
1

2
�ij(S � e)) + L�Kij)

@tAi = �Ei �Di�

@tEi = �DjDjAi +DiD
jAj � 4⇡Ji

Therefore, the evolution part of Maxwell’s equations reads: 

to compare with the evolution equations of the ADM system
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Therefore, it is possible to make the following correspondence:

� $ �i

Ai $ �ij

Ei $ Kij

and to note that the r.h.s. of the evolution equations of             
involve a field variable,               ,and spatial derivatives of 
gauge quantities  

Ai / �ij

Ei /Kij

� /�i

Ei /Kij

Ai / �ij

In fact, the similarities between the ADM equations and 
Maxwell’s equations. when written in terms of a vector potential, 
are so close that the latter suffer from the same type of 
numerical problems/instabilities than the ADM equations. 

Likewise, the r.h.s. of the evolution equations of                  
involve matter terms and second-order spatial derivatives of the 
second field variable  
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To illustrate how to obtain a form of the ADM system well-suited 
for numerical work, let us consider again Maxwell’s equations, as 
they are simpler and the rationale of the procedure is quite 
similar. Let us start with

@tAi = �Ei �Di�

We take one time derivative and use the evolution equation for the 
electric field      to obtainEi

�@2
tAi +DjDjAi �DiD

jAj = Di@t�� 4⇡Ji

This equation would be a wave equation if the mixed derivatives 
term DiD

jAj

In general relativity the situation is very similar because       contains           
mixed derivatives plus a Laplacian operator acting on  �ij

Rij

Without such mixed derivatives the principal part of the 3+1 ADM 
equations could be written as a wave equation for the 3-metric �ij

were not present.
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Why do we care about wave equations?

⇤� = @2
t �� @i@i� = 0

Wave equations are manifestly hyperbolic and mathematical 
theorems guarantee existence and uniqueness of solutions. 

Diverse numerical techniques have been developed to solve 
hyperbolic PDEs, for instance the reduction to a first-order in 
time, second-order in space system:

⇤� = 0 ,
⇢
@t� =  
@t = @i@i�

Stated differently: we know how to solve wave equations and 
what to expect. 
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How do we turn Maxwell’s equations into a manifestly hyperbolic 
system? 

Three ways:

1. Using a specific gauge choice, for instance the Lorentz gauge, 
to simplify the equations: @t� = �DiAi

(@2
t �DjDj)Ai = ⇤Ai = 4⇡Ji

This can also be done in general relativity by introducing 
harmonic coordinates and a generalized harmonic formulation of 
Einstein’s equations.

2. Through a gauge invariant method resulting from taking a time 
derivative of       instead of      . This yields toEi Ai

which, using the constraint equation                       , can be written DiEi = 4⇡⇢e

@2
tEi = DiD

j(�Ej �Dj�)�DjDj(�Ei �Di�)� 4⇡@tJi

⇤Ei = �4⇡(@tJi +Di⇢e)
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While this is an attractive procedure it can be prone to problems 
since the matter source term is proportional to spatial derivatives of 
the charge density, Di⇢e

In general relativity this would correspond to having derivatives of 
the rest-mass density, and could be a divergent term in the presence 
of shock waves (discontinuities). 

3. Introducing a new variable to remove the mixed-derivatives term, 
that is, by defining                 such that the evolution equation reads� ⌘ DiAi

@tEi = �DjDjAi +Di�� 4⇡Ji

⇤Ai = �Di��Di@t�+ 4⇡Ji

Clearly, it is necessary a new evolution equation for       which is now 
a new dynamical variable just like the rest (but with no physical 
meaning):

@t� = @tD
iAi = Di@tAi = �DiEi �DiD

i� = �4⇡⇢e �DiD
i�

Despite there is one more equation, the system is now hyperbolic.

�
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The ADM system can be modified with the introduction of new 
evolution variables so that the resulting system is strongly 
hyperbolic:

� =
1

12
ln(det(�ij)) =

1

12
ln(�)

�̃ij = e�4��ij

Ãij = e�4�

✓
Kij �

1

3
�ijK

◆
K = �ijKij

�i = �jk�i
jk

�̃i = �̃jk�̃i
jk

�

�̃ij

K

Ãij

�̃i

conformal factor

conformal 3-metric 

trace of extrinsic 
curvature

conformal, traceless 
extrinsic curvature

gamma’s

new evolution 
variables
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With respect to the new variables, the ADM equations read: 

Dt�̃ij = �2↵Ãij

DtÃij = e�4�[�rirj↵+ ↵(Rij � Sij)]
TF + ↵(KÃij � 2ÃikÃ

k
j )

Dt� = �1

6
↵K

DtK = ��ijrirj↵+


ÃijÃ

ij +
1

3
K2 +

1

2
(⇢+ S)

�

Dt�̃
i = �2Ãij@j↵+ 2↵

✓
�̃i
jkÃ

kj � 2

3
�̃ij@jK � �̃ijSj + 6Ãij@j�

◆

�@j

✓
�l@l�̃

ij � 2�̃m(j@m�i) +
2

3
�̃ij@l�

l

◆

Dt ⌘ @t � L�

These equations are known as BSSN equations or simply the 
conformal, traceless formulation of Einstein’s equations. 

Kojima, Nakamura & Oohara (1987); Shibata & Nakamura (1995); Baumgarte & Shapiro (1999)
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Although not evident, the BSSNOK equations constitute a 
strongly hyperbolic system and have a structure that resembles 
that of a first-order in time, second-order in space system: 

⇤� = 0 ,
⇢
@t� =  
@t = @i@i�

scalar wave equation

8
<

:

@t�̃ij / Ãij

@tÃij / DiDi�̃ij

conformal traceless formulation

BSSNOK is nowadays the standard 3+1 formulation in NR.

Long-term stable numerical simulations have been possible for 
strongly gravitating systems as neutron stars (isolated and in 
binary systems) and black holes (isolated and in binary 
systems). 
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Example: ADM vs BSSNOK

Baumgarte & Shapiro (1999)

Evolution of a gravitational wave of small amplitude 

ADM
BSSNOK
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BBH simulations: State of the art
1995: Pair of pants 
(Head-on collision)

2007: Pair of twisted pants 
(spiral & merge)BB
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Further reading

 Baumgarte & Shapiro: 
Numerical relativity: solving Einstein’s equations on 
the computer 
(Cambridge University Press, 2010)

 Alcubierre: 
Introduction to 3+1 numerical relativity 
(Oxford University Press, 2008)

 Gourgoulhon: 
3+1 formalism and bases of numerical relativity 
(gr-qc/0703035)
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