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Neutron star binaries have been observed in the Galaxy.

Black hole binaries? Hypothetical system.

Numerical Relativity
Binary black hole merger

(SXS)
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NR simulation of a BNS merger

Rezzolla+ (2011)
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Improvements necessary: microphysics for thermal EoS, magnetic 
fields, dissipative fluids, radiative transfer, ... current frontier.  

��
⇥Fµ⇥ = 0, (Maxwell eqs. : induction, zero div.)

Our best approximation to the “realistic” modelling of dynamical 
evolutions in relativistic astrophysics (state-of-the-art?)

Our basic theoretical model
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Lecture 1:  Hydrodynamics and MHD

Lecture 2:  Einstein’s equations

Lecture 3:  Numerical methods

Lecture 4:  Applications in astrophysics

- Binary neutron star mergers
- Core collapse supernovae

Outline
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Lecture 1
Hydrodynamics and MHD 
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Time-dependent evolutions of fluid flow coupled to the 
spacetime geometry (Einstein’s equations) possible through 
accurate, large-scale numerical simulations. 

Some scenarios can be described in the test-fluid 
approximation: GRHD/GRMHD computations in curved 
backgrounds (highly mature).

GRHD/GRMHD equations are nonlinear hyperbolic systems. 
Solid mathematical foundations and accurate numerical 
methodology imported from CFD. A “preferred” choice: high-
resolution shock-capturing schemes written in conservation 
form. (see Lecture 3)

General relativity and relativistic hydrodynamics play a major 
role in the description of gravitational collapse leading to the 
formation of compact objects (neutron stars and black holes).

Prime Sources of Gravitational Radiation.
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The defining property of fluids (liquids and gases) lies in the 
ease with which they may be deformed. 

A “simple fluid” may be defined as a material such that the 
relative positions of its constituent elements change by a large 
amount when suitable forces, however small in magnitude, are 
applied to the material.

For most simple molecules, stable equilibrium between two 
molecules is achieved when their separation d0 ~ 3-4x10-8 cm. 

Average spacing for gases ~10 d0, while in liquids and solids is 
~ d0.

Fluid dynamics deals with the behaviour of matter in the 
large (average quantities per unit volume), on a macroscopic 
scale large compared with the distance between molecules, 
l>>d0, not taking into account the molecular structure of fluids. 

Fluid dynamics
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Eulerian description: time variation of fluid properties in a fixed position 
in space.

Lagrangian description: variation of properties of a “fluid particle” along 
its motion.

Both descriptions are equivalent: there exists a change of variables 
between them which is related to the Jacobian of the so-called “flux 
function” which describes the trajectories of fluid particles.

The quantities that characterize a fluid (in the continuum limit) are 
functions of time and position:

density (scalar field)

velocity (vector field)

pressure tensor (tensor field)

Macroscopic behaviour of fluids assumed to be continuous in structure, 
and physical quantities such as mass, density, or momentum contained 
within a given small volume are regarded as uniformly spread over that 
volume.
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Vt is a volume which moves with the fluid (Lagrangian description; 
image of V0 by the diffeomorphism given by the flux function).

Transport theorems (Reynolds-Leibniz)

• Scalar field
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Generalization to 3D of the Leibniz integral rule (differentiation under 
the integral sign). 

• Vector field



Applying the transport theorem for the density (scalar field):

where the convective derivative is defined as

Mass conservation (continuity equation)
Let Vt be a volume which moves with the fluid; its mass is given by:

Principle of conservation of mass enclosed within that volume:
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the variation of the mass enclosed in a fixed volume V is equal to the 
flux of mass across the surface at the boundary of the volume.

Incompressible fluid:

Corolary:

Since the previous equation must hold for any volume Vt we obtain the 
continuity equation:
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“the variation of momentum of a given portion of fluid is equal to the net 
force (stresses plus external forces) exerted on it” (Newton’s 2nd law):

Applying the transport theorem on the l.h.s. of the above equation:

which must be valid for any volume Vt, hence:

After some algebra and using the continuity eq. we obtain Euler’s eq.:

Momentum balance (Euler’s equation)
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Let E be the total energy of the fluid, kinetic + internal energy:

Principle of energy conservation: “the variation in time of the total energy 
of a portion of fluid is equal to the work done per unit time over the 
system by the stresses (internal forces) and the external forces”.

After some algebra (transport theorem, divergence theorem) we obtain:

which, as must be satisfied for any given volume, implies:

Energy conservation
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The equations of perfect fluid dynamics are a nonlinear hyperbolic 
system of conservation laws:

is a conservative external force field (e.g. gravitational field): 

Hyperbolic system of conservation laws

state vector

fluxes

source terms

~g = �r� �� = 4⇡G⇢
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The equations of perfect fluid dynamics are a nonlinear hyperbolic 
system of conservation laws:

Hyperbolic system of conservation laws

state vector

fluxes

source terms
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source terms in the momentum and energy equations 
due to coupling between matter and radiation (when 
transport phenomena are taken into account).



The region of influence of the solution is bounded by the 
eigenvalues of the Jacobian matrix of the system.

(link with numerical 
schemes in Lecture 3)
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Hyperbolic equations have finite propagation speed: information 
can travel with limited speed, at most that given by the largest 
characteristic curves of the system. 
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A perfect fluid can be defined as that for which the force across the surface 
separating two fluid particles is normal to that surface.

Kinetic theory tells us that the existence of velocity gradients implies the 
appearance of a force tangent to the surface separating two fluid layers 
(across which there is molecular difussion).

where     is the pressure tensor which 
depends on pressure and velocity gradients.

where      is the stress tensor given by:

distortion expansion
shear and bulk viscosities

Using the pressure tensor in the previous 
derivation of the Euler eq. and of the energy eq. 
yields their viscous versions:

Navier-Stokes eq.

Energy eq.

A bit on viscous fluids
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The general relativistic hydrodynamics equations are obtained 
from the local conservation laws of the stress-energy 
tensor, Tµν (the Bianchi identities), and of the matter current 
density Jµ (the continuity equation): 

Equations of motion

    covariant derivative associated with the four dimensional 
spacetime metric 

The density current is given by  

       is the fluid 4-velocity and       is the rest-mass density in a 
locally inertial reference frame.

General relativistic hydrodynamics 

(µ = 0, · · · , 3)

rµ

Jµ = ⇢uµ

gµ⌫

uµ ⇢
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where ε is the specific internal energy density of the fluid, p is the 
pressure, and hµν is the spatial projection tensor, hµν=uµuν+gµν. 

In addition, µ and ξ are the shear and bulk viscosity coefficients. 

The expansion, Θ, describing the divergence or convergence of 
the fluid world lines is defined as Θ=∇µuν. The symmetric, trace-
free, and spatial shear tensor σµν is defined by:

Finally qµ is the energy flux vector. 

The stress-energy tensor for a non-perfect fluid is defined as: 
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In the following we will neglect non-adiabatic effects, such as 
viscosity or heat transfer, assuming the stress-energy tensor to be 
that of a perfect fluid:

where we have introduced the relativistic specific enthalpy, h

Scalar x0 represents a foliation of spacetime with hypersurfaces (with 
coordinates xi),  g=det(gµν), and         are the Christoffel  symbols.

Conservation laws with respect to an explicit coordinate chart 

Tµ⌫ = ⇢huµu⌫ + pgµ⌫
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The system formed by the eqs of motion and the continuity eq must be 
supplemented with an equation of state (EOS) relating the pressure 
to some fundamental thermodynamical quantities, e.g.

Perfect fluid:

Polytrope:

(Newtonian analogy: Euler’s equation + Poisson’s equation) 

Einstein’s equations

p = p(⇢, ")
p = ⇢� , � = 1 +

1

N

p = (�� 1)⇢"

p = p(⇢, ")

Rµ⌫ � 1

2
gµ⌫R = 8⇡Tµ⌫

In the “test-fluid” approximation (fluid’s self-gravity neglected), the 
dynamics of the matter fields is fully described by the previous 
conservation laws and the EOS. If such approximation does not hold, 
the previous equations must be solved in conjunction with Einstein’s 
equations for the gravitational field which describe the evolution of a 
dynamical spacetime:

(details on 
Lecture 2)
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3+1 GR Hydro equations: formulations

Different formulations exist depending on:

1. Choice of slicing: level surfaces of x0 spatial (3+1) or null 
2. Choice of physical (primitive) variables (ρ, ε, ui …)

Wilson (1972) wrote the system as a set of advection equation 
within the 3+1 formalism. Non-conservative.
Conservative formulations well-adapted to numerical methodology 
are more recent:

• Martí, Ibáñez & Miralles (1991): 1+1, general EOS
• Eulderink & Mellema (1995): covariant, perfect fluid
• Banyuls et al (1997): 3+1, general EOS (“Valencia formulation”)
• Papadopoulos & Font (2000): covariant, general EOS
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(Martí & Müller, 2003)

Problem setup

constant density 
cold gas

flow 
velocity

shock 
speed

shock front                  solid wall

shocked 
material

high density

high pressure

zero velocity

Analytic solution:

1 2

The relativistic shock reflection 
problem is a demanding test 
involving the heating of a cold gas 
which impacts at relativistic speed 
with a solid wall creating a shock 
which propagates off the wall.

Relativistic shock reflection
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Non-conservative formulations show limitations when simulating 
ultrarelativistic flows (Centrella & Wilson 1984, Norman & Winkler 1986).

Relativistic shock reflection test relative errors as a function of the fluid’s 
Lorentz factor W. For W≈2 (v≈0.86c), error ~ 5-7% (depends on the 
adiabatic index of the EOS) and shows a linear increase with W. 

Ultrarelativistic flows could only be handled once conservative 
formulations were adopted (Martí, Ibáñez & Miralles 1991; Marquina et al 1992)
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Numerically, the hyperbolic and conservative nature of the GRHD 
equations allows to design a solution procedure based on the 
characteristic speeds and fields of the system, translating to relativistic 
hydrodynamics existing tools of CFD.

3+1: foliation of spacetime with spatial hypersurfaces ∑t  with constant t.

Valencia’s conservative formulation (Banyuls et al 1997)

Line element:

ds

2 = �(↵2 � �i�
i)dt2 + 2�idx

i
dt+ �ijdx

i
dx

j

Eulerian observer: at rest on the 
hypersurface; moves from  ∑t to ∑t+∆t 
along the unit normal vector. Speed 
given by:
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First-order flux-conservative hyperbolic system

Lorentz factor specific enthalpy
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Full GR

Newton

Minkowski

Recovering special relativistic and Newtonian limits

(quiz: prove it!)
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Numerical schemes based on Riemann solvers use the local 
characteristic structure of the hyperbolic system of 
equations. 

The eigenvalues (characteristic speeds) are all real (but not 
distinct, one showing a threefold degeneracy), and a 
complete set of right-eigenvectors exists. The above 
system satisfies, hence, the definition of hyperbolicity.

Eigenvalues (along the x direction)

Eigenvalues (characteristic speeds)
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Special relativistic limit (along x-direction)

coupling with transversal components of the velocity 
(important difference with Newtonian case)

Even in the purely 1D case:

For causal EOS sound cone lies within light cone

Recall Newtonian (1D) case:

�0 = vx, �± = vx ± c
s

~v = (vx, 0, 0) ) �0 = vx, �± =
vx ± c

s

1± vxc
s
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Dynamics of relativistic, electrically conducting fluids in the presence of 
magnetic fields.

Ideal GRMHD: Absence of viscosity effects and heat conduction in the 
limit of infinite conductivity (perfect conductor fluid).

The stress-energy tensor includes contribution from the perfect fluid 
and from the magnetic field bµ measured by observer comoving with 
the fluid.

Ideal MHD condition: 
electric four-current 
must be finite.

with the definitions:

General relativistic MHD 
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Adding all up: first-order, flux-conservative, hyperbolic system + constraint 

Antón et al. (2006)Conservation of mass:

Conservation of energy and momentum: 

Maxwell’s equations:

• Divergence-free constraint:

• Induction equation:

General relativistic MHD: equations 



Wave structure classical MHD (Brio & Wu 1988): 7 physical waves

Anile & Pennisi (1987), Anile (1989) (see also van Putten 1991) have studied the 
characteristic structure of the equations (eigenvalues, right/left eigenvectors) in 
the space of covariant variables (uµ,bµ,p,s).

Wave structure for relativistic MHD (Anile 1989): roots of the characteristic equation.

 Only entropic waves and Alfvén waves are explicit. 
 Magnetosonic waves are given by the numerical solution of a quartic equation. 
 Augmented system of equations: Unphysical eigenvalues/eigenvectors (entropy & 

Alfvén) which must be removed numerically (Anile 1989, Komissarov 1999, 
Balsara 2001, Koldoba et al 2002).

MHD equations: hyperbolic structure 
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Further reading
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