

TEST PARTICLE TRAJECTORIES IN REISSNER-NORDSTRÖM SPACETIME

João P. B. Brito¹, Rafael P. Bernar², Carolina L. Benone³ and Luís C. B. Crispino¹

¹Programa de Pós-Graduação em Física, Universidade Federal do Pará, 66075-110, Belém, Pará, Brasil·

²Departamento de Física, Universidade Federal do Maranhão, Campus Universitário do Bacanga, 65080-805, São Luís, Maranhão, Brasil.

³Campus Universitário Salinópolis, Universidade Federal do Pará, 68721-000, Salinópolis, Pará, Brasil.

Many aspects of General Relativity (GR) solutions can be investigated by a careful analysis of test-particle motion in the corresponding spacetimes. Some classical tests of GR involve test-particle trajectories in the spherically symmetric Schwarzschild solution, which describes the spacetime of a static black hole with zero electric charge. The spacetime outside an spherically symmetric distribution of mass and electric charge, on the other hand, is described by the Reissner-Nordström solution, which can also describe the spacetime of a static and electrically charged black hole. We analyze the Reissner-Nordström solution, studying the trajectories of free test particles (geodesics), as well as of electrically charged test particles in the corresponding spacetime.