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Part II



Exact solutions in higher D: 
Linear instabilities
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Exact solutions in higher D: Stability of Tangherlini

✦ Linear (modal) gravitational perturbations can be decomposed into !

scalar    +    vector    +    tensor

[Kodama, Ishibashi (2003)]

✦ Using a gauge-invariant formalism Kodama and Ishibashi showed that 
“the master equation for each type of perturbation has no normalisable 
negative modes that would correspond to unstable solutions”.

✦ Similarly, higher dimensional Schwarzschild-(anti-)de Sitter is also mode-stable.
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Exact solutions in higher D: Gregory-Laflamme instability

✦ By studying linear (modal) perturbations for the black string, assuming a separated 
ansatz,!

Gregory and Laflamme showed that an instability appeared for long wavelengths.

[Gregory, Laflamme (1993)]

[Lehner, Pretorius (2010)]

✦ An analogous result applies to black branes.

Formulas

More formulas

gµ⌫ ! gµ⌫ + hµ⌫ hµ⌫ = eimze⌦t Hµ⌫(r)
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from [Gregory (2011)]

z

time independent = stationary
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Exact solutions in higher D: Ultraspinning instability

✦ An ultraspinning black hole flattens out near the poles. !

✦ Locally it resembles a black brane, which is unstable…

[Emparan, Myers (2003)]

✦ To firmly demonstrate such an instability, resort to numerical techniques 
(spectral methods) for studying gravitational perturbations of higher 
dimensional rotating BHs.
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Exact solutions in higher D: Ultraspinning instability

[Dias, Figueras, Monteiro, Santos, Emparan (2009)]
[Dias, Figueras, Monteiro, Santos (2010)]

✦ Singly spinning MP solutions branch off — at certain spin 
parameters — to new stationary (bumpy) BHs, but 

only for D ≥ 6.

[Dias, Figueras, Monteiro, Reall, Santos (2010)]

✦ Considering equal angular momenta BHs, it has been shown these are 

afflicted by ultraspinning instability for D ≥ 7. 

[Murata, Soda (2008)]
Note 1:  EAM Myers-Perry in 5D proved to be stable against linear perturbations.

Note 2:  The cohomogeneity-1 property allows to study greybody factors with !
relative ease. [Jorge, Oliveira, Rocha (2015)]
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Exact solutions in higher D: Phase structure

from [Emparan, Harmark, Niarchos, Obers, Rodríguez (2007)]

[Dias, Santos, Way (2014)]

[Emparan, Figueras, Martínez (2014)]
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Exact solutions in higher D: Bar-mode instability

✦ Quickly spinning BHs should also be unstable against a non-axisymmetric 
instability. [Emparan, Myers (2003)]

[Dias, Hartnett, Santos (2014)]

[Shibata, Yoshino (2010)]✦ This was numerically confirmed by non-linear time evolutions.!

✦ Also by linear QNM analysis, for D=6, 7. But not D=5.

✦ This bar-mode instability kicks in at smaller rotation than the ultraspinning 
instability.
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Exact solutions in higher D: Instabilities of the 5D black ring

✦ Fat rings are unstable towards radial perturbations. [Elvang, Emparan, Virmani (2006)]
[Figueras, Murata, Reall (2011)]

✦ Recently, moderately thin rings were shown to suffer from linear instabilities.
[Santos, Way (2015)]

✦ Very thin rings must be Gregory-Laflamme unstable.



Approximate solutions in higher D: 
The blackfold approach

[Emparan, Harmark, Niarchos, Obers (2009), (2010)]
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Approximate solutions in higher D: Blackfold heuristics

✦ Similarly, one can take a black brane and bend it into different shapes…

✦ Black rings can be thought of as black strings bend into a circle.

blackfold = black hole + manifold
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Approximate solutions in higher D: Separation of scales

✦ Approach works if!

!!      typical curvature of the background R  >>  radius of BH horizon r0

Formulas

More formulas

gµ⌫ ! gµ⌫ + hµ⌫ hµ⌫ = eimze⌦t Hµ⌫(r)

T µ⌫

ds2
(near) = ds2

Schw + O(r/R) ds2
(far) = ds2

background + O(r/r0)

Jorge V. Rocha (CENTRA - IST) Formulas UFPA, Belém, May 12, 2015 10 / 11

Formulas

More formulas

gµ⌫ ! gµ⌫ + hµ⌫ hµ⌫ = eimze⌦t Hµ⌫(r)

T µ⌫

ds2
(near) = ds2

Schw + O(r/R) ds2
(far) = ds2

background + O(r/r0)

Jorge V. Rocha (CENTRA - IST) Formulas UFPA, Belém, May 12, 2015 10 / 11

✦ Solutions can be matched in the overlapping region  r0 << r << R.!

This cumbersome procedure can be circumvented by using symmetry 

and conservation principles:

Formulas

More formulas

gµ⌫ ! gµ⌫ + hµ⌫ hµ⌫ = eimze⌦t Hµ⌫(r)

T µ⌫

ds2
(near) = ds2

Schw + O(r/R) ds2
(far) = ds2

background + O(r/r0)

rµT µ⌫ = 0
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Approximate solutions in higher D: Effective stress-energy tensor

✦ What could         possibly be?

Formulas

More formulas

gµ⌫ ! gµ⌫ + hµ⌫ hµ⌫ = eimze⌦t Hµ⌫(r)

T µ⌫
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[Brown, York (1993)]

Formulas

More formulas

gµ⌫ ! gµ⌫ + hµ⌫ hµ⌫ = eimze⌦t Hµ⌫(r)

T µ⌫
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✦ We are effectively replacing the black hole (or black string, or black brane) by 
a point source (or a line source, etc.).!

        is the stress-energy tensor of a domain wall, enclosing empty space, that 
originates an exterior field equal to that of the black hole (or black string, etc.).
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Approximate solutions in higher D: Effective stress-energy tensor

✦ Take a the Schwarzschild solution in d dimensions

Formulas

More formulas
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Formulas

More formulas

n ⌘ d � 3 D ⌘ d + p = n + p + 3
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and make a flat black brane in D dimensions by adding p flat directions:

Formulas

More formulas
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Formulas

More formulas
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, define               ,

✦ This black brane can be boosted in the zi directions, and we still get a solution 
of the Einstein eqs.

✦ The effective stress-energy tensor for this brane takes the form of a perfect fluid:

Formulas

More formulas

n ⌘ d � 3 D ⌘ d + p = n + p + 3

T ab = (⇢ + P)uaub + P⌘ab

⇢ =
⌦n+1

16⇡G
(n + 1)rn

0 P = �
⌦n+1

16⇡G
rn
0
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✦ Consideration of slightly bent branes (with gradients in r0 , ua and      ) gives 
dissipative corrections to the stress-energy tensor.

Formulas

More formulas
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Approximate solutions in higher D: Known BHs from blackfolds

✦ Myers-Perry as a black 2-fold (disk):

- At each point of the disk we put an Sn+1 sphere.

- For the boundary of the worldvolume to be free (no 
surface tension) the pressure must go to zero there.

✦ Note:  The separation of scales R  >>  r0  implies that neutral blackfolds are 
always in an ultraspinning regime.

- Resulting blackfold has horizon topology Sn+3.

- Expressions for mass, angular momentum and entropy precisely agree 
with those of the  D=n+5  Myers-Perry BH in the ultra pinning limit.

✦ Black ring as a black 1-fold (circle):

- Similar to the blackfold disk but now the black string is actually bent…
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Approximate solutions in higher D: Comparison with numerics

[Dias, Santos, Way (2014)] [Armas, Harmark (2014)]

D=6:

[Kleihaus, Kunz, Radu (2014)]
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Approximate solutions in higher D: Helical black rings

✦ Consider D=5.!
A stationary (compact) black 1-fold must wrap along a spatial isometry of IR4.!
Embed it as

✦ If n1=n2=1 we just recover the circular planar black ring.!
Otherwise, one obtains a helical black ring.

Formulas

More formulas

ds2 =
2X

i=1

(dr2
i + r2

i d�2
i ) ri = Ri �i = ni� � 2 [0, 2⇡)

Jorge V. Rocha (CENTRA - IST) Formulas UFPA, Belém, May 12, 2015 12 / 13

✦ For the curve to close in on itself (and to avoid multiple covering) the ni’s must 
be integers (and coprime).

✦ Helical BRs have the largest entropy among BFs with 
given mass and angular momenta.!
Moreover, they saturate the rigidity theorem.



Approximate solutions in higher D: 
The large D limit

[Emparan, Suzuki, Tanabe (2013), (2014)]
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Approximate solutions in higher D: Large D limit

✦ Take the Tangherlini solution in D dimensions and keep the length scale r0 
fixed as

Formulas

More formulas
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✦ In this limit the area of the unitary sphere vanishes exponentially

Formulas

More formulas
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zero cross section

✦ Moreover, gravitational potential                vanishes exponentially, away from r0 .

Formulas
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spacetime outside r0 is flat

Formulas
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no attraction
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Approximate solutions in higher D: Separation of scales (again)

✦ Besides the lengthscale r0 we also have a (widely separated) scale  

✦ Once again we can tackle problems in these spacetimes with matched 
asymptotic expansions.

Formulas

More formulas

=
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2r0
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D
r0
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surface gravity on the horizon

✦ The study of black hole scattering reveals that waves with low frequencies (             )  
are strongly reflected by the BH (and high frequencies are almost perfectly absorbed).

Formulas

More formulas
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! <
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BH is just a hole cut out in flat space with reflecting boundary conditions
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Approximate solutions in higher D: Universal quasinormal modes

✦ Consider a massless scalar field, with (rescaled) radial profile        .

✦ The potential vanishes at the horizon and at infinity, with a maximum somewhere 
in between determined by the angular momentum quantum number.

Formulas

More formulas
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2r0
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✦ The Klein-Gordon eq. can be written in the conventional form

Formulas

More formulas
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In the large D limit it simplifies:

✦ The least damped QNMs can be equivalently 
computed (via analytic continuation) by the 
lowest bound states in the inverted potential.

Formulas

Formulas

� = 0 ⇢2 = 0

r± = GM ±
p

G

2
M

2 � a

2

a > M (set G = 1)

2GM r ! 2GM r � GQ

2

=)
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Universal set of QNMs for static,  
non-extremal, asymptotically flat BHs
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Approximate solutions in higher D: Comparing with numerics

✦ Good agreement with numerics, obtained for QNMs of Equal Angular 
Momenta BHs. [Emparan, Suzuki, Tanabe (2014)]

[Hartnett, Santos (2013)]
[Dias, Hartnett, Santos (2014)]

Formulas

More formulas

ds2 =
2X

i=1

(dr2
i + r2

i d�2
i ) ri = Ri �i = ni� � 2 [0, 2⇡)

ds2 = �
 

1 �
rD�3
0

rD�3

!
dt2 +

dr2
✓

1 � rD�3
0

rD�3

◆ + r2d⌦2
D�2

D ! 1

D = 15 (`, m) = (2, 2)
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from [Emparan, Suzuki, Tanabe (2014)]



Epilogue
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✦ Gravity in higher dimensions is much richer than in 4D.

Not noticing it would be like navigating to India and not discovering Brazil.


