Black holes in higher dimensional spacetimes
 Jorge V. Rocha (Centra-IST, U. Lisboa)

Part II

Exact solutions in higher D:

Linear instabilities

Exact solutions in higher D: Stability of Tangherlini

[Kodama, Ishibashi (2003)]

* Linear (modal) gravitational perturbations can be decomposed into

```
scalar + vector + tensor
```

* Using a gauge-invariant formalism Kodama and Ishibashi showed that "the master equation for each type of perturbation has no normalisable negative modes that would correspond to unstable solutions".
* Similarly, higher dimensional Schwarzschild-(anti-)de Sitter is also mode-stable.

Exact solutions in higher D: Gregory-Laflamme instability

* By studying linear (modal) perturbations for the black string, assuming a separated ansatz,

$$
g_{\mu \nu} \rightarrow g_{\mu \nu}+h_{\mu \nu} \quad h_{\mu \nu}=e^{i m z} e^{\Omega t} H_{\mu \nu}(r)
$$

Gregory and Laflamme showed that an instability appeared for long wavelengths.

[Lehner, Pretorius (2010)]

+ An analogous result applies to black branes.

Exact solutions in higher D: Ultraspinning instability

* An ultraspinning black hole flattens out near the poles.
+ Locally it resembles a black brane, which is unstable...

* To firmly demonstrate such an instability, resort to numerical techniques (spectral methods) for studying gravitational perturbations of higher dimensional rotating BHs .

Exact solutions in higher D: Ultraspinning instability

+ Singly spinning MP solutions branch off — at certain spin parameters - to new stationary (bumpy) BHs, but only for $\mathrm{D} \geq 6$.
[Dias, Figueras, Monteiro, Santos, Emparan (2009)]
[Dias, Figueras, Monteiro, Santos (2010)]

+ Considering equal angular momenta BH s, it has been shown these are afflicted by ultraspinning instability for $\mathrm{D} \geq 7$. [Dias, Figueras, Monteiro, Reall, Santos (2010)]

Note I: EAM Myers-Perry in 5D proved to be stable against linear perturbations.
[Murata, Soda (2008)]
Note 2: The cohomogeneity- I property allows to study greybody factors with relative ease.
[Jorge, Oliveira, Rocha (20|5)]

Exact solutions in higher D: Phase structure

from [Emparan, Harmark, Niarchos, Obers, Rodríguez (2007)]

Exact solutions in higher D: Bar-mode instability

+ Quickly spinning BHs should also be unstable against a non-axisymmetric instability.
[Emparan, Myers (2003)]

+ This was numerically confirmed by non-linear time evolutions. [Shibata, Yoshino (2010)]
+ Also by linear QNM analysis, for $D=6,7$. But not $D=5$.
[Dias, Hartnett, Santos (20|4)]
+ This bar-mode instability kicks in at smaller rotation than the ultraspinning instability.

Exact solutions in higher D: Instabilities of the 5D black ring

- Fat rings are unstable towards radial perturbations.
[Elvang, Emparan, Virmani (2006)] [Figueras, Murata, Reall (201 I)]
* Very thin rings must be Gregory-Laflamme unstable.
* Recently, moderately thin rings were shown to suffer from linear instabilities.
[Santos, Way (20 I 5)]

Approximate solutions in higher D: The blackfold approach

[Emparan, Harmark, Niarchos, Obers (2009), (20 10)]

Approximate solutions in higher D: Blackfold heuristics

* Black rings can be thought of as black strings bend into a circle.

+ Similarly, one can take a black brane and bend it into different shapes...

> blackfold = black hole + manifold

Approximate solutions in higher D: Separation of scales

+ Approach works if
typical curvature of the background $R \gg$ radius of BH horizon r_{0}
+ Solutions can be matched in the overlapping region $r_{0} \ll r \ll R$.
This cumbersome procedure can be circumvented by using symmetry and conservation principles: $\nabla_{\mu} T^{\mu \nu}=0$

Approximate solutions in higher D: Effective stress-energy tensor

+ What could $T^{\mu \nu}$ possibly be?

+ We are effectively replacing the black hole (or black string, or black brane) by a point source (or a line source, etc.).
$T^{\mu \nu}$ is the stress-energy tensor of a domain wall, enclosing empty space, that originates an exterior field equal to that of the black hole (or black string, etc.).
+ This can be computed using the Brown-York quasilocal stress-energy tensor.
[Brown, York (1993)]

Approximate solutions in higher D: Effective stress-energy tensor

+ Take a the Schwarzschild solution in dimensions, define $n \equiv d-3$, and make a flat black brane in D dimensions by adding p flat directions:

$$
\begin{gathered}
d s^{2}=-\left(1-\frac{r_{0}^{n}}{r^{n}}\right) d t^{2}+\frac{d r^{2}}{\left(1-\frac{r_{0}^{n}}{r^{n}}\right)}+r^{2} d \Omega_{n+1}^{2}+\sum_{i=1}^{p}\left(d z^{i}\right)^{2} \\
D \equiv d+p=n+p+3
\end{gathered}
$$

* This black brane can be boosted in the z^{i} directions, and we still get a solution of the Einstein eqs.
+ The effective stress-energy tensor for this brane takes the form of a perfect fluid:

$$
T^{a b}=(\rho+P) u^{a} u^{b}+P \eta^{a b} \quad \rho=\frac{\Omega_{n+1}}{16 \pi G}(n+1) r_{0}^{n} \quad P=-\frac{\Omega_{n+1}}{16 \pi G} r_{0}^{n}
$$

+ Consideration of slightly bent branes (with gradients in r_{0}, u^{a} and $\eta^{\text {ab }}$) gives dissipative corrections to the stress-energy tensor.

Approximate solutions in higher D: Known BHs from blackfolds

* Note: The separation of scales $R \gg r_{0}$ implies that neutral blackfolds are always in an ultraspinning regime.
+ Myers-Perry as a black 2-fold (disk):
- At each point of the disk we put an S^{n+1} sphere.
- For the boundary of the worldvolume to be free (no surface tension) the pressure must go to zero there.
- Resulting blackfold has horizon topology S^{n+3}.

- Expressions for mass, angular momentum and entropy precisely agree with those of the $D=n+5$ Myers-Perry BH in the ultra pinning limit.
+ Black ring as a black I-fold (circle):
- Similar to the blackfold disk but now the black string is actually bent...

Approximate solutions in higher D: Comparison with numerics

[Dias, Santos, Way (20|4)]

[Armas, Harmark (20|4)]

	spherical horizon	black rings	black ringoids		
	MP/'pinched'	$k=0$	$k=1$	$k=2$	$k=3$
$d=5$	S^{3}	$\mathbf{S}^{2} \times \mathbf{S}^{1}$			
$d=6$	S^{4}	$S^{3} \times S^{1}$			
$d=7$	S^{5}	$S^{4} \times S^{1}$	$\mathbf{S}^{2} \times \mathbf{S}^{3}$		
$d=8$	S^{6}	$S^{5} \times S^{1}$	$S^{3} \times S^{3}$		
$d=9$	S^{7}	$S^{6} \times S^{1}$	$S^{4} \times S^{3}$	$\mathbf{S}^{2} \times \mathbf{S}^{5}$	
$d=10$	S^{8}	$S^{7} \times S^{1}$	$S^{5} \times S^{3}$	$S^{3} \times S^{5}$	
$d=11$	S^{9}	$S^{8} \times S^{1}$	$S^{6} \times S^{3}$	$S^{4} \times S^{5}$	$\mathbf{S}^{2} \times \mathbf{S}^{7}$

[Kleihaus, Kunz, Radu (20|4)]

Approximate solutions in higher D: Helical black rings

- Consider D=5.

A stationary (compact) black I-fold must wrap along a spatial isometry of $I R^{4}$. Embed it as

$$
d s^{2}=\sum_{i=1}^{2}\left(d r_{i}^{2}+r_{i}^{2} d \phi_{i}^{2}\right) \quad r_{i}=R_{i} \quad \phi_{i}=n_{i} \sigma \quad \sigma \in[0,2 \pi)
$$

* For the curve to close in on itself (and to avoid multiple covering) the n's must be integers (and coprime).
- If $n_{1}=n_{2}=1$ we just recover the circular planar black ring. Otherwise, one obtains a helical black ring.
* Helical BRs have the largest entropy among BFs with given mass and angular momenta.
Moreover, they saturate the rigidity theorem.

Approximate solutions in higher D: The large D limit

[Emparan, Suzuki, Tanabe (20|3), (20 | 4)]

Approximate solutions in higher D: Large D limit

* Take the Tangherlini solution in D dimensions and keep the length scale r_{0} fixed as $D \rightarrow \infty$

$$
d s^{2}=-\left(1-\frac{r_{0}^{D-3}}{r^{D-3}}\right) d t^{2}+\frac{d r^{2}}{\left(1-\frac{r_{0}^{D-3}}{r^{D-3}}\right)}+r^{2} d \Omega_{D-2}^{2}
$$

+ In this limit the area of the unitary sphere vanishes exponentially

$$
\Omega_{D-2}=\frac{2 \pi^{(D-1) / 2}}{\Gamma\left(\frac{D-1}{2}\right)} \rightarrow \frac{D}{\sqrt{2} \pi}\left(\frac{2 \pi e}{D}\right)^{D / 2} \rightarrow 0
$$

+ Moreover, gravitational potential $\left(\frac{r_{0}}{r}\right)^{D-3}$ vanishes exponentially, away from r_{0}.

Approximate solutions in higher D: Separation of scales (again)

* Besides the lengthscale r_{0} we also have a (widely separated) scale

$$
\text { surface gravity on the horizon }=\frac{D-3}{2 r_{0}} \sim \frac{D}{r_{0}}
$$

+ Once again we can tackle problems in these spacetimes with matched asymptotic expansions.
* The study of black hole scattering reveals that waves with low frequencies ($\omega<\frac{D}{r_{0}}$) are strongly reflected by the BH (and high frequencies are almost perfectly absorbed).
$\Longrightarrow \mathrm{BH}$ is just a hole cut out in flat space with reflecting boundary conditions

Approximate solutions in higher D: Universal quasinormal modes

* Consider a massless scalar field, with (rescaled) radial profile $\phi(r)$.
+ The Klein-Gordon eq. can be written in the conventional form

$$
\frac{d^{2} \phi}{d r_{*}^{2}}+\left(\omega^{2}-V\left(r_{*}\right)\right) \phi=0
$$

* The potential vanishes at the horizon and at infinity, with a maximum somewhere in between determined by the angular momentum quantum number. In the large D limit it simplifies: $\quad V\left(r_{*}\right) \rightarrow \frac{D^{2} \varpi_{\ell}^{2}}{r_{*}^{2}} \Theta\left(r_{*}-r_{0}\right) \quad \varpi_{\ell} \equiv \frac{1}{2}+\frac{\ell}{D}$
* The least damped QNMs can be equivalently computed (via analytic continuation) by the lowest bound states in the inverted potential.

Universal set of QNMs for static, \Longrightarrow non-extremal, asymptotically flat $\mathrm{BH} s$

Approximate solutions in higher D: Comparing with numerics

* Good agreement with numerics, obtained for QNMs of Equal Angular Momenta BHs.

[Emparan, Suzuki, Tanabe (20|4)]
[Hartnett, Santos (20|3)]
[Dias, Hartnett, Santos (20 14)]

$$
D=15 \quad(\ell, m)=(2,2)
$$

from [Emparan, Suzuki, Tanabe (20|4)]

Epilogue

- Gravity in higher dimensions is much richer than in 4D.

Not noticing it would be like navigating to India and not discovering Brazil.

