Black holes in higher dimensional spacetimes
 Jorge V. Rocha (Centra-IST, U. Lisboa)

The plan

- Motivation
+ 4D black holes (solutions, uniqueness, stability)
+ Exact solutions in higher D: Solutions and generating techniques
+ Exact solutions in higher D: Non-uniqueness
+ Exact solutions in higher D: Linear instabilities
+ Approximate solutions in higher D: The blackfold approach
+ Approximate solutions in higher D: The large D limit
Today's lecture

Part I

Disclaimer

+These lectures will concern (mostly) Einstein's equations in vacuum, i.e., pure GR formulated in D spacetime dimensions:

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=0
$$

+ Occasionally, we may consider gravity coupled to other fields or turn on a cosmological constant.
- Refer to Brito's lectures for astrophysical implications of the presence of matter in strong gravitational fields.
- Refer to Vitagliano's lectures for alternative theories of gravity.

Motivation: Why D>4?

+ D is the only available parameter in the vacuum Einstein equations.
* By considering $D \neq 4$ we can gain understanding about GR.

Example: Yang-Mills theory with $S U(N)$ gauge group simplifies when $N \rightarrow \infty$.

Example: In certain cases, more symmetries available dramatically simplifies study of rotating BH s.

Motivation: Why D>4?

+ Extra dimensions are required by several modern promising proposals:
- AdS/CFT correspondence
- String theory / M-theory
- Braneworld models
- TeV scale gravity

4D black holes

4D black holes: Basics

+ A black hole spacetime is a geometry that possesses a region from which light (null geodesics) cannot be emanated to infinity. The (hyper)surface that encloses this domain is called the event horizon.
+ Typically there will be curvature singularities hidden behind the horizon. This is acceptable as long as the spacetime 'visible' to a distant observer is regular.
+ Note: There are no asymptotically flat BHs in 3D.
(Presence of an apparent horizon requires a negative cosmological constant.) [lda (2000)]

4D black holes: Schwarzschild (1916)

- The simplest BH solution (spherically symmetric):

$$
d s^{2}=-\left(1-\frac{2 G M}{r}\right) d t^{2}+\left(1-\frac{2 G M}{r}\right)^{-1} d r^{2}+r^{2} d \Omega_{2}^{2}
$$

- describes a non-rotating black hole
- has a curvature singularity at $r=0$
- has an event horizon at $r=2 G M$
+ Birkhoff's theorem (1923) guarantees this is the unique spherically symmetric solution of the vacuum Einstein equations.

Note: This excludes time-dependent spherically symmetric solutions.

4D black holes: Kerr (1963)

* An axisymmetric \& stationary (possessing a timelike Killing vector) BH solution:

$$
\begin{gathered}
d s^{2}=-\left(1-\frac{2 G M r}{\rho^{2}}\right) d t^{2}-\frac{4 G M a r \sin ^{2} \theta}{\rho^{2}} d t d \phi+\frac{\sin ^{2} \theta}{\rho^{2}}\left[\left(r^{2}+a^{2}\right)^{2}-a^{2} \Delta \sin ^{2} \theta\right] d \phi^{2}+\frac{\rho^{2}}{\Delta} d r^{2}+\rho^{2} d \theta^{2} \\
\Delta \equiv r^{2}-2 G M r+a^{2} \quad \rho^{2} \equiv r^{2}+a^{2} \cos ^{2} \theta
\end{gathered}
$$

- rotating generalization of Schwarzschild
- is parametrized by mass M and angular momentum $J=M a$
- has a ring-like singularity at $\rho^{2}=0$
$=$ has horizons wherever $\Delta=0 \longrightarrow r_{ \pm}=G M \pm \sqrt{G^{2} M^{2}-a^{2}}$

Naked singularity if $a>M \quad($ set $G=1)$

4D black holes: Carter-Penrose diagrams

+ Causal structure is conveniently encoded in Carter-Penrose diagrams.

Schwarzschild:

Kerr:
under-extremal

over-extremal

4D black holes: Kerr-Newman (1965)

* The Kerr-Newman metric can be obtained from the Kerr solution by a simple replacement:

$$
2 G M r \rightarrow 2 G M r-G Q^{2}
$$

- charged generalization of Kerr
- is parametrized by mass M, angular momentum $J=M a$ and charge Q
- same causal structure as Kerr

4D black holes: Uniqueness

* A static, asymptotically flat vacuum spacetime, non-singular on and outside an event horizon, must be Schwarzschild.
+ Similarly, uniqueness of Kerr and Kerr-Newman as stationary, asymptotically flat vacuum and electrovacuum spacetimes, respectively, has been proven. [Carter (1971)]
[Robinson (1974)]
* These results go under the name of "no hair theorems" because they imply that the most general vacuum stationary BH is parametrized by only 2 parameters.
They are almost bald: not many possibilities for hair-styling.

Note: These theorems assume non-degenerate horizon and analyticity of spacetime.

4D black holes: Topology and Rigidity

- Hawking's topology theorem asserts that cross sections of the event horizon of a stationary BH (obeying Dominant Energy Condition) are spherical. [Hawking (1972)]

$$
\begin{aligned}
& \text { Note: The generalization to } D>4 \text { only requires the } \\
& \text { event horizon to be a manifold of positive Tamabe type. } \\
& \text { (This allows topology } S^{2} x S^{1} \text {) [Galloway, Schoen (2006)] }
\end{aligned}
$$

* The rigidity theorem for stationary asymptotically flat solutions of the Einstein-Maxwell equations guarantees that

$$
\text { stationarity } \Longrightarrow \text { axisymmetry }
$$

Note: This result is also valid in D>4.

4D black holes: Stability

+ Several notions of stability: mode stability $<$ linear stability $<$ non-linear stability see [Berti, Cardoso, Starinets (2009)]
* Mode stability of Schwarzschild proved long ago. [Regge-Wheeler (1957)] [Zerilli (1970)] [Moncrief (1974)]
* Mode stability of Kerr also proved. [Whiting (1989)]
* Strong evidence supporting mode stability of Kerr-Newman.
[Zilhão et al. (20|4)]
[Dias, Godazgar, Santos (2015)]
- Schwarzschild is linearly stable. [Dafermos-Holzegel-Rodnianski (20|3)] [Dotti (20|4)]
* Linear stability of Kerr is still an open issue!
- Compare: Non-linear stability of Minkowski was proved in a 400+ pages monograph.
[Christodoulou-Klainerman (1994)]

Exact solutions in higher D:
 Solutions and generating techniques

Exact solutions in higher D: Novelties

	$D=4$	$D>4$
\# dof	2	$\frac{D(D-3)}{2}$
\# rotation planes	$\mathbf{1}$	$\left\lfloor\frac{D-1}{2}\right\rfloor$
Newtonian potential	$-\frac{G M}{r}$	$-\frac{G M}{r^{D-3}}$
centrifugal potential		$\frac{J^{2}}{M^{2} r^{2}}$

Exact solutions in higher D: Constructing simple solutions

* The generalization of Schwarzschild to higher dimensions is straightforward:

$$
d s^{2}=-\left(1-\frac{\mu}{r^{D-3}}\right) d t^{2}+\left(1-\frac{\mu}{r^{D-3}}\right)^{-1} d r^{2}+r^{2} d \Omega_{D-2^{2}}
$$

* Adding flat directions we still get a solution of the vacuum Einstein equations.
\longrightarrow black strings \& black branes

Exact solutions in higher D: Not so simple solutions

- The generalization of Kerr to higher dimensions is not at all straightforward. The resulting solution is known as the Myers-Perry black hole. [Myers-Perry (1986)]
+ The metric (too complicated to show here) describes a BH in any dimension D>4, rotating in all possible rotation planes.
- parametrized by mass M, and $\left\lfloor\frac{D-1}{2}\right\rfloor$ angular momenta $J_{i} \sim M a_{i}$
- same causal structure as Kerr, except when at least one $\boldsymbol{a}_{i}=0$ (for even D, two for odd D)

(b)

Exact solutions in higher D: Myers-Perry

+ Parameter space is larger \Longrightarrow conditions for \exists horizon are more complicated

Note I: For D>5, BH can be ultraspinning in some directions.
Note 2: When all spins are identical there is enhanced symmetry and metric depends on a single 'radial' coordinate (cohomogeneity-I spacetime).

* These solutions were obtained by taking a Kerr-Schild ansatz: $g_{\mu \nu}=\eta_{\mu \nu}+H\left(x^{\lambda}\right) k_{\mu} k_{\nu}$ This reduces the Einstein equations to a set of linear equations!

Exact solutions in higher D: Solution generating techniques

"It often happens when one is trying to solve an equation that an algorithm will exist for constructing new solutions from a given solution."
[Wald in "General Relativity" (1984)]

+ Simplest sol. gen. tech.: add flat directions to a known solution
* Another simple sol. gen. tech. of great utility in Kaluza-Klein theories:

$$
\text { uplift }+ \text { boost }+ \text { reduce }
$$

Exact solutions in higher D: Solution generating techniques

+ Most sol. gen. techs. rely on using available symmetries (which may be hidden).
- Ehlers transformation: assumes one Killing vector
- Geroch transformation: 2 commuting Killing vectors
[Geroch (197|)]

Note: Generated solutions may not be physically relevant.

- Kinnersley-Chitre: subgroup preserving asymptotic flatness [Kinnersley, Chitre (I978)] can be used to generate Kerr
- Inverse scattering method: D-2 commuting Killing vectors [Belinskii, Zakharov (1978)]
- Bäcklund transformation: D-2 commuting Killing vectors
[Harrison (1978)]
algebraic procedure!

Exact solutions in higher D: Stationary and axisymmetric ansatz

+ Consider stationary, axisymmetric solutions of Einstein eqs. in vacuum.
+ Assume D-2 commuting Killing vector fields, $\partial / \partial x^{i}$.
Then metric can be written in canonical form:

$$
d s^{2}=\sum_{i, j=0}^{D-3} G_{i j}(\rho, z) d x^{i} d x^{j}+e^{2 \nu(\rho, z)}\left[d \rho^{2}+d z^{2}\right], \quad \operatorname{det} G=-\rho^{2}
$$

+ Metric only depends on coordinates (ρ, z) and has block diagonal form:

Exact solutions in higher D: Static and axisymmetric case

* The vacuum Einstein eqs. reduce to a decoupled set of equations for the Killing sector $G_{i j}$ and for the conformal factor $e^{2 \nu}$.
* Moreover, $e^{2 \nu}$ is automatically determined once a solution for $G_{i j}$ is found.
+ Obtaining static (diagonal) solutions is simple. Writing

$$
G=\operatorname{diag}\left\{-e^{2 U_{0}}, e^{2 U_{1}}, e^{2 U_{2}}, \ldots\right\}
$$

the problem reduces to finding $D-2$ solutions, $U_{i}(\rho, z)$, of the Laplace equation in an auxiliary (cylindrically symmetric) 3d flat space:

$$
\nabla_{3 d}^{2} U_{i}=0
$$

Exact solutions in higher D: Rod structure

* The potentials U_{i} are entirely specified by the location of zero-thickness rods along the axis of the auxiliary space.
* The constraint $\operatorname{det} G=-\rho^{2}$ translates into $\sum_{i} U_{i}=\log \rho$.

Meaning: sources must add up to give an infinite rod.
Note: This simple picture also holds in the stationary case.

* Upshot: Vacuum solutions of the Einstein equations with D-2 orthogonal commuting KVFs are fully determined by rod-like sources, only subject to the above constraint.

Note: The class of metrics considered can be asymptotically flat only if $\mathrm{D} \leq 5$. If $D>5$ there are necessarily $K K$ directions.

Exact solutions in higher D: Static black ring

- Some thumb rules:
finite timelike rods \longleftrightarrow event horizons
semi-infinite spacelike rods \longleftrightarrow axes of rotation

Note: The static black ring is not regular. A conical singularity disk bounded by the ring provides the necessary force to balance the system.

Exact solutions in higher D: Inverse scattering method

* The Belinskii-Zakharov approach consists in replacing the original (non-linear) equation for $G_{i j}$ by an equivalent system of linear equations (Lax pair).
* If the seed is diagonal and the 'dressing' procedure is restricted to the so-called class of solitonic transformations, then the whole scheme is purely algebraic.

Note I: The seed solution need not be regular.
Note 2: Might need to impose some constraints to generate a regular solution.

Exact solutions in higher D: Rotating black ring [Emparan, Reall (2002)]

+ Originally discovered by a Wick rotation of a C-metric and some educated guesswork (a.k.a. black magic).
* However, the black ring can be systematically generated using the ISM.
[Tomizawa, Nozawa (2006)]
+ In essence*, one takes the static black ring solution and performs a solitonic transformation that adds further parameters to the solution, thus obtaining a rotating generalization.
+ Can add rotation along S^{1}, along S^{2}, add more black holes...

Exact solutions in higher D: The 5D black hole bestiary

Myers-Perry black rings

black Saturn

bicycling black ring

double MP

black di-ring
[Pomeransky (2006)], [Tomizawa et al. (2006)], [Tomizawa, Nozawa (2006)], [Pomeransky, Sen'kov (2006)], [Elvang, Figueras (2007)], [Elvang \& Rodriguez (2008)], [Herdeiro et al. (2008)], [Evslin, Krishnan (2009)]

+ In certain Einstein-Maxwell-dilaton theories the ISM can also be applied to construct (magnetic) dipole black rings and electrically charged black rings.
[Rocha, Rodriguez,Virmani (20|I)] [Rocha, Rodriguez, Varela,Virmani (2013)]
+ A plethora of black objects is expected to populate $\mathrm{D} \geq 6$.

Exact solutions in higher D: Non-uniqueness

Exact solutions in higher D: Non-uniqueness

- In 5D, for a certain range of parameters 3 BHs C®êdist with the same charges:

Phase diagram for singly rotating BH solutions in 5D
from [R. Emparan (2009)]

