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✦ Motivation!

✦ 4D black holes (solutions, uniqueness, stability)!

✦ Exact solutions in higher D:  Solutions and generating techniques!

✦ Exact solutions in higher D:  Non-uniqueness!

✦ Exact solutions in higher D:  Linear instabilities!

✦ Approximate solutions in higher D:  The blackfold approach!

✦ Approximate solutions in higher D:  The large D limit
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Part I
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These lectures will concern (mostly) Einstein’s equations in vacuum, 
i.e., pure GR formulated in D spacetime dimensions:!

Occasionally, we may consider gravity coupled to other fields or turn on 
a cosmological constant.

Refer to Brito’s lectures for astrophysical implications of the presence of matter 
in strong gravitational fields.!

Refer to Vitagliano’s lectures for alternative theories of gravity.

Formulas

Formulas

Gµ⌫ = Rµ⌫ �
1
2

R gµ⌫ = 0

Consider stationary, axisymmetric solutions of Einstein eqs. in vacuum:

Rµ⌫ = 0 .

Assume D � 2 commuting Killing vector fields, @/@x

i .

Then metric can be written in canonical form: [Wald, 1984] [Emparan & Reall, 2002] [Harmark, 2004]
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✦ D is the only available parameter in the vacuum Einstein equations.

Motivation: Why D>4?

✦ By considering            we can gain understanding about GR.

Formulas

Formulas

D 6= 4
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Example:  In certain cases, more symmetries available dramatically simplifies study of !
rotating BHs.

Example:  Yang-Mills theory with SU(N) gauge group simplifies when               .

Formulas

Formulas

D 6= 4

N ! 1
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✦ Extra dimensions are required by several modern promising proposals:!

- AdS/CFT correspondence!

- String theory / M-theory!

- Braneworld models!

- TeV scale gravity

Motivation: Why D>4?



4D black holes
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✦ A black hole spacetime is a geometry that possesses a region from which 
light (null geodesics) cannot be emanated to infinity.  The (hyper)surface that 
encloses this domain is called the event horizon.

4D black holes: Basics

✦ Typically there will be curvature singularities hidden behind the horizon.  
This is acceptable as long as the spacetime ‘visible’ to a distant observer is 
regular.

✦ Note:  There are no asymptotically flat BHs in 3D.!
(Presence of an apparent horizon requires a negative cosmological constant.) [Ida (2000)]
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✦ The simplest BH solution (spherically symmetric):

4D black holes: Schwarzschild (1916)

➡ describes a non-rotating black hole!
➡ has a curvature singularity at !
➡ has an event horizon at 

✦ Birkhoff’s theorem (1923) guarantees this is the unique spherically symmetric 
solution of the vacuum Einstein equations.!

Note:  This excludes time-dependent spherically symmetric solutions.

Formulas

Formulas

D 6= 4

N ! 1
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✦ An axisymmetric & stationary (possessing a timelike Killing vector) BH solution:

4D black holes: Kerr (1963)

Formulas

Formulas

D 6= 4
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➡ rotating generalization of Schwarzschild!
➡ is parametrized by mass M and angular momentum J=Ma!
➡ has a ring-like singularity at !
➡ has horizons wherever

Formulas

Formulas
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Naked singularity if 

Formulas

Formulas
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✦ Causal structure is conveniently encoded in Carter-Penrose diagrams.

4D black holes: Carter-Penrose diagrams

Schwarzschild:

extremal

over-extremal

under-extremal

Kerr:

from [R. Myers (2011)]
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✦ The Kerr-Newman metric can be obtained from the Kerr solution by a simple 
replacement:

4D black holes: Kerr-Newman (1965)

➡ charged generalization of Kerr!
➡ is parametrized by mass M,  angular momentum J=Ma  and charge Q!
➡ same causal structure as Kerr

Formulas

Formulas

� = 0 ⇢2 = 0

r± = GM ±
p

G

2
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2
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✦ A static, asymptotically flat vacuum spacetime, non-singular on and outside an 
event horizon, must be Schwarzschild.

4D black holes: Uniqueness

[Israel (1967)]
[Bunting, Masood-Ul-Alam (1987)]

✦ Similarly, uniqueness of Kerr and Kerr-Newman as stationary, asymptotically flat 
vacuum and electrovacuum spacetimes, respectively, has been proven. [Carter (1971)]

[Robinson (1974)]

Note:  These theorems assume non-degenerate horizon !
         and analyticity of spacetime.

✦ These results go under the name of “no hair theorems” because they imply that 
the most general vacuum stationary BH is parametrized by only 2 parameters. 
They are almost bald: not many possibilities for hair-styling.
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✦ Hawking’s topology theorem asserts that cross sections of the event horizon of 
a stationary BH (obeying Dominant Energy Condition) are spherical.

4D black holes: Topology and Rigidity

[Hawking (1972)]

✦ The rigidity theorem for stationary asymptotically flat solutions of the 
Einstein-Maxwell equations guarantees that!

!! stationarity            axisymmetry

Formulas

Formulas

� = 0 ⇢2 = 0

r± = GM ±
p
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[Hawking (1972)]

time

Note:  The generalization to D>4 only requires the 
event horizon to be a manifold of positive Tamabe type. 
(This allows topology S2xS1) [Galloway, Schoen (2006)]

Note:  This result is also valid in D>4.
[Hollands, Ishibashi, Wald (2006)]
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4D black holes: Stability

✦ Several notions of stability:!

mode stability     <     linear stability     <     non-linear stability

✦ Schwarzschild is linearly stable. [Dafermos-Holzegel-Rodnianski (2013)]  [Dotti (2014)]

✦ Linear stability of Kerr is still an open issue!

✦ Compare:  Non-linear stability of Minkowski was proved in a 400+ pages monograph.
[Christodoulou-Klainerman (1994)]

see [Berti, Cardoso, Starinets (2009)]

✦ Mode stability of Schwarzschild proved long ago. [Regge-Wheeler (1957)]  [Zerilli (1970)]  
[Moncrief (1974)]

✦ Mode stability of Kerr also proved. [Whiting (1989)]

✦ Strong evidence supporting mode stability of Kerr-Newman. [Zilhão et al. (2014)]
[Dias, Godazgar, Santos (2015)]



Exact solutions in higher D: 
Solutions and generating techniques
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Exact solutions in higher D: Novelties

D = 4 D > 4

# dof 2

# rotation planes 1

Newtonian potential

centrifugal potential

Formulas

Formulas
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Exact solutions in higher D: Constructing simple solutions

✦ The generalization of Schwarzschild to higher dimensions is straightforward:
[Tangherlini (1963)]

Formulas

Formulas
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✦ Adding flat directions we still get a solution of the vacuum Einstein equations.!

black strings  &  black branes

x x
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Exact solutions in higher D: Not so simple solutions

✦ The generalization of Kerr to higher dimensions is not at all straightforward. 
The resulting solution is known as the Myers-Perry black hole. [Myers-Perry (1986)]

✦ The metric (too complicated to show here) describes a BH in any dimension D>4, 
rotating in all possible rotation planes.

➡ parametrized by mass M,  and              angular momenta Ji ~Mai!
➡ same causal structure as Kerr, except when at least one ai=0 (for even D, two for odd D)

Formulas

Formulas
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from [R. Myers (2011)]
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Exact solutions in higher D: Myers-Perry

✦ Parameter space is larger             conditions for     horizon are more complicatedE

Formulas

Formulas

� = 0 ⇢2 = 0

r± = GM ±
p

G

2
M

2 � a

2

a > M (set G = 1)

2GM r ! 2GM r � GQ

2

=)

Jorge V. Rocha (CENTRA - IST) Formulas UFPA, Belém, May 12, 2015 4 / 5

a1

a2

a1

a2

a1

a2

a3
5D 6D 7D

Note 2:  When all spins are identical there is enhanced symmetry and metric depends !
         on a single ‘radial’ coordinate (cohomogeneity-1 spacetime).

Note 1:  For D>5, BH can be ultraspinning in some directions.

✦ These solutions were obtained by taking a Kerr-Schild ansatz:!

This reduces the Einstein equations to a set of linear equations!

Formulas

Formulas

gµ⌫ = ⌘µ⌫ + H(x�)kµk⌫

Assume D � 2 commuting Killing vector fields, @/@xi .

Then metric can be written in canonical form: [Wald, 1984] [Emparan & Reall, 2002] [Harmark, 2004]

ds2 =
D�3X

i,j=0

Gij (⇢, z)dxi dxj + e2⌫(⇢,z)
h
d⇢2 + dz2

i
, det G = �⇢2 ,

Metric only depends on coordinates (⇢, z) and has block diagonal form:

gµ⌫ =

0
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0

0 e2⌫

1
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Exact solutions in higher D: Solution generating techniques

“It often happens when one is trying to solve an equation that an algorithm!
will exist for constructing new solutions from a given solution.”

[Wald in “General Relativity” (1984)]

✦ Simplest sol. gen. tech. :  add flat directions to a known solution

✦ Another simple sol. gen. tech. of great utility in Kaluza-Klein theories:  !

uplift  +  boost  +  reduce
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Exact solutions in higher D: Solution generating techniques

✦ Most sol. gen. techs. rely on using available symmetries (which may be hidden).

➡ Ehlers transformation:  assumes one Killing vector!
➡ Geroch transformation:  2 commuting Killing vectors

[Ehlers (1957)]
[Geroch (1971)]

[Kinnersley, Chitre (1978)]➡ Kinnersley-Chitre:  subgroup preserving asymptotic flatness

Note:  Generated solutions may not be physically relevant.

can be used to generate Kerr

[Belinskii, Zakharov (1978)]➡ Inverse scattering method:  D-2 commuting Killing vectors!
➡ Bäcklund transformation:    D-2 commuting Killing vectors [Harrison (1978)]

[Neugebauer (1979)]
algebraic procedure!
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Exact solutions in higher D: Stationary and axisymmetric ansatz

✦ Consider stationary, axisymmetric solutions of Einstein eqs. in vacuum.

✦ Assume D − 2 commuting Killing vector fields,           .  
Then metric can be written in canonical form:

Formulas
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✦ Metric only depends on coordinates (ρ, z) and has block diagonal form:

Killing sector

conformal factor
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Exact solutions in higher D: Static and axisymmetric case

✦ The vacuum Einstein eqs. reduce to a decoupled set of equations for the 
Killing sector       and for the conformal factor       .
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✦ Moreover,        is automatically determined once a solution for       is found.
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✦ Obtaining static (diagonal) solutions is simple.  Writing!

!

the problem reduces to finding D−2 solutions, Ui (ρ, z), of the Laplace equation 
in an auxiliary (cylindrically symmetric) 3d flat space:

Formulas

Static, axisymmetric solutions [Weyl, 1917] [Emparan & Reall, 2002]

Obtaining static (diagonal) solutions is straightforward. Writing

G = diag{�e2U0 , e2U1 , e2U2 , . . . } ,

the problem reduces to finding D � 2 solutions, Ui (⇢, z), of the Laplace equation in an
auxiliary (cylindrically symmetric) 3D flat space:

r2
3d Ui = 0 , ds2

aux = d⇢2 + ⇢2d✓2 + dz2 .

Boundary conditions: zero-thickness rods act as sources for the Newtonian potentials Ui .
E.g., for a finite rod:

Ui (⇢, z) =
1
2

log(µk�1/µk )

The potentials are entirely specified by the location of the rod endpoints, ak .
These appear in combinations known as solitons and anti-solitons:

µk =
q

⇢2 + (z � ak )2 � (z � ak ) , µk = �
q

⇢2 + (z � ak )2 � (z � ak ) .
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[Weyl (1917)]!
[Emparan, Reall (2002)]
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Exact solutions in higher D: Rod structure

✦ The potentials Ui are entirely specified by the location of zero-thickness rods 
along the axis of the auxiliary space.

✦ The constraint                      translates into                         .!

Meaning:  sources must add up to give an infinite rod.

Formulas

Static, axisymmetric solutions

The constraint det G = �⇢2 translates into
P

i Ui = log ⇢ .

Meaning: sources must add up to give an infinite rod.

Upshot

Vacuum solutions of the Einstein equations with D � 2 orthogonal commuting KVFs are fully
determined by rod-like sources, only subject to the above constraint. [Emparan & Reall, 2002]

Note: the class of metrics considered above can be asymptotically flat only when D  5.
If D > 5 there are necessarily KK directions.
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Note:  This simple picture also holds in the stationary case.

✦ Upshot:   Vacuum solutions of the Einstein equations with D−2 orthogonal  
commuting KVFs are fully determined by rod-like sources, only 
subject to the above constraint.

[Emparan, Reall (2002)]

Note:  The class of metrics considered can be asymptotically flat only if D ≤ 5. !    !
If D > 5 there are necessarily KK directions.
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Exact solutions in higher D: Static black ring

Ut

UΦ

UΨ
a1 a2 a3

Φ

Ψ

Note:  The static black ring is not regular.  A conical singularity disk bounded by the 
!    ring provides the necessary force to balance the system.

[Emparan, Reall (2002)]

✦ Some thumb rules:!
finite timelike rods           event horizons!

semi-infinite spacelike rods          axes of rotation
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Exact solutions in higher D: Inverse scattering method

Note 1:  The seed solution need not be regular.  
Note 2:  Might need to impose some constraints to generate a regular solution.

✦ The Belinskii-Zakharov approach consists in replacing the original (non-linear) 
equation for       by an equivalent system of linear equations (Lax pair).

  New solution

remove solitons
(trivial BZ vectors)Seed G0

e�i�

G’0
re-add solitons
(general BZ vectors) G

e�i

Known solution

✦ If the seed is diagonal and the ‘dressing’ procedure is restricted to the so-called 
class of solitonic transformations, then the whole scheme is purely algebraic.

Formulas

Formulas

gµ⌫ = ⌘µ⌫ + H(x�)kµk⌫

Assume D � 2 commuting Killing vector fields, @/@xi .

Then metric can be written in canonical form: [Wald, 1984] [Emparan & Reall, 2002] [Harmark, 2004]

ds2 =
D�3X

i,j=0

Gij (⇢, z)dxi dxj + e2⌫(⇢,z)
h
d⇢2 + dz2

i
, det G = �⇢2 ,

Metric only depends on coordinates (⇢, z) and has block diagonal form:

gµ⌫ =

0

BBBBBB@

Gij 0

e2⌫ 0
0

0 e2⌫

1

CCCCCCA
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Exact solutions in higher D: Rotating black ring

✦ Originally discovered by a Wick rotation of a C-metric and some educated 
guesswork (a.k.a. black magic).

[Emparan, Reall (2002)]

S2

S1

✦ However, the black ring can be systematically generated using the ISM.
[Tomizawa, Nozawa (2006)]

✦ In essence*, one takes the static black ring solution and performs a solitonic 
transformation that adds further parameters to the solution, thus obtaining a 
rotating generalization.

*In practice it’s a bit more involved.

✦ Can add rotation along S1, along S2, add more black holes…



29

Exact solutions in higher D: The 5D black hole bestiary

✦ A plethora of black objects is expected to populate D ≥ 6.

Myers-Perry    black rings          black Saturn        bicycling black ring    double MP     black di-ring

[Pomeransky (2006)],  [Tomizawa et al. (2006)],  [Tomizawa, Nozawa (2006)],  [Pomeransky, Sen’kov (2006)], 
[Elvang, Figueras (2007)],  [Elvang & Rodriguez (2008)],  [Herdeiro et al. (2008)],  [Evslin, Krishnan (2009)]

✦ In certain Einstein-Maxwell-dilaton theories the ISM can also be applied to 
construct (magnetic) dipole black rings and electrically charged black rings.

[Rocha, Rodriguez, Virmani (2011)] [Rocha, Rodriguez,  Varela, Virmani (2013)]



Exact solutions in higher D: 
Non-uniqueness
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Exact solutions in higher D: Non-uniqueness

✦ In 5D, for a certain range of parameters 3 BHs                     with the same charges:

from [R. Emparan (2009)]Phase diagram for singly rotating BH solutions in 5D


