TECNICO FC

Rotating shells, non-spherical gravitational collapse
and cosmic censorship

JVR Int. J. Mod. Phys. D24, 1542002 (2015) [1501.06724 [gr-qc]]
T. Delsate, JVR and R. Santarelli  Phys. Rev. D89, 121501(R) (2014) [1405.1433 [gr-qc]]
JVR, R. Santardlli,and T. Delsate Phys. Rev. D89, 104006 (2014) [1402.4161 [gr-qc]]

Belém, UF Para IV Amazonian VWorkshop on Black Holes and Analogue Models of Gravity May 15,2015




Introduction: Black holes and gravitational collapse

+ There is overwhelming observational evidence that black holes (BHs) exist.
[M. Begelman, Science 300 (2003)]



Introduction: Black holes and gravitational collapse

+ There is overwhelming observational evidence that black holes (BHs) exist.
[M. Begelman, Science 300 (2003)]

+ BHs are theoretically predicted as the endpoint of gravitational collapse of
sufficiently massive stars.



Introduction: Black holes and gravitational collapse

+ There is overwhelming observational evidence that black holes (BHs) exist.
[M. Begelman, Science 300 (2003)]

+ BHs are theoretically predicted as the endpoint of gravitational collapse of
sufficiently massive stars.




Introduction: Black holes and gravitational collapse

+ There is overwhelming observational evidence that black holes (BHs) exist.
[M. Begelman, Science 300 (2003)]

+ BHs are theoretically predicted as the endpoint of gravitational collapse of
sufficiently massive stars.



Introduction: Black holes and gravitational collapse

+ There is overwhelming observational evidence that black holes (BHs) exist.
[M. Begelman, Science 300 (2003)]

+ BHs are theoretically predicted as the endpoint of gravitational collapse of
sufficiently massive stars.

+ The vast majority of celestial objects are rotating. Black holes are no exception.
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Introduction: Gravitational collapse with rotation

+ Good understanding of rotating but stationary BHs.

+ Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

I

non-spherical gravitational collapse

Why should we care?
|. realistic collapses should include rotation;

2. known ‘violations’ of the cosmic censorship conjecture (CCC) occur in
non-rotating — thus non-generic — settings;

3. rotation introduces instabilities (e.g. superradiance).
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+ Advantage of non-rotating setups is their large amount of symmetry.
Spherical symmetry reduces problem to 1+1 dims.

+ d alarger class of (rotating) BH spacetimes that are stationary and whose
metric depends on a single radial coordinate:

[ cohomogeneity-1 solutions j

y < e

[ perturbative approach J [ exact approach J
D S

gravitational perturbations armois-Israel junction condition

VR, Santarelli, Delsate (2014)] [Delsate, VR, Santarelli (2014)]

+ The price to pay for the convenience provided by cohomogeneity-1 spacetimes is
the restriction to higher (odd) dimensions, D=2N+3 with N=1, 2, 3, ...
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+ Myers-Perry(-AdS) BHs in D=2N+3 dims possess isometry group R x U(1)V*,

+ When all spin parameters are set equal, a; = a, this symmetry is enhanced:

R x U@)N* S R x U(N +1)

and coordinates can be found that reflect this large amount of symmetry,
such that the metric depends on just one (radial) coordinate.

[Frolov-Stojkovic (2002)] [Lucietti-Kunduri-Reall (2006)]

+ Constant t and r sections are squashed (2N+1)-spheres.

+ SN+l can be written as a St bundle over CPN,
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+ The metric for these cohomogeneity-1 BHs is

ds? = guvdztdx” = —f(r)2dt® + g(r)?dr® + 7“ r2dz’ + h(r)? [dy —I—.ala: —

where

2 —_ 2\ —1
> r M= 2Ma » r
g(r)” = (1 - 02 2N T 702N+2> ’ fr) = g(r)h(r)’
2M a? 2Ma a’
2 2 _ =

gab denotes the Fubini-Study metric on CPN and Aadz® is its Kahler potential.
ot @abdxadxb = i (d6? + sin? edq@, ( = %cosec@.

+ n.b.These solutions accommodate a non-vanishing cosmological constant:
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+ The cohomogeneity-| property makes an exact (thin-shell) calculation possible,

‘gluing’ an interior to an exterior geometry. [Israel (1966)] [Kuchar (1968)]

[Boulware (1973)] [Gao-Lemos (2008)]

+ Take advantage of high degree of symmetry: consider shells that respect full set of

spatial isometries. Focus on N=1, for simplicity.

+ n.b.The dynamics on the CP1=S? and on the S! separate.
All traces of the rotation show up in the {r, %'} plane.

ir.0,0}

ir, v}

e N
\ [JVR, Santarelli, Delsate (2014)]
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+ Use junction conditions along a timelike hypersurface, t = 7(7),r = R(7):

: . +) _ () —
induced metric — G;j ~ = jj ~ = Gij shell’s stress-

k(+) ki(j—)) — gij (K — k) = _87-‘-GSij4/ -energy tensor

extrinsic curvature —— (

This formalism has been applied to rotating spacetimes in (2+1) dims. [Criséstomo-Olea (2004)]
[Mann-Oh-Park (2009)]

+ For D>3, we get one additional constraint from the 1st junction condition:

M.a% = M_a? h.(R) = h_(R) = h(R)

+ The 2nd junction condition requires the shell stress-energy tensor to

take the form of an imperfect fluid:

i = (p+P)u; Uj + P Jij + 2¢ u(lfj) + AP Rzglj

pressure anisotropy
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Rotating thin shells: Equation of state and shell equation of motion

+ The stress-energy tensor components are dictated by the metric components:

_ (B+ — B)(R?Y _ (34— 3 )(RhY
= 87R3 r 47m2R*h

h /

where [+ = fi\/l + g2 R2?.

+ For simplicity, assume a linear equation of state, P = wp.
(Other EoS can be considered, e.g., polytropic)

+ These equations can be integrated, yielding the shell’s equation of motion:

(R? +Ver(R) = 0)
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¢ confining nature of the potential +  centrifugal barrier
(due to negative cosmological constant) (due to rotation)

=== o (stable) stationary configurations of shells around rotating BHs in AdS
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[Delsate, VR, Santarelli (2014)]
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+ Take asymptotically flat limit, ¢ — co.

+ Collapse starting from rest at infinity imposes: — W = 0 i.e., matter on the shell
\ has EoS of dust
Mo = AM e, the increment in
mass of the spacetime
is given precisely by the
mass of the shell

M_=0.2, M,=0.25, Ma®=0.012, my=0.05

R(7)
[Delsate, JVR, Santarelli (2014)]
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+ Take asymptotically flat limit, ¢ — co.

+ Collapse starting from rest at infinity imposes: — W = 0 i.e., matter on the shell
\ has EoS of dust
Mo = AM e, the increment in
mass of the spacetime
is given precisely by the
mass of the shell

M_=0.2, M,=0.25, Ma®=0.012, my=0.05

Weak energy conditions
(WEC) are satisfied

[Delsate, JVR, Santarelli (2014)]
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+ Under the assumed conditions (collapse in AF spacetime starting from infinity
at rest) it can be shown quite generally that

if initially one has a (sub-extremal) BH, then after the shell collapses there will be
a larger horizon covering the singularity.
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Rotating thin shells: Cosmic censorship

+ Under the assumed conditions (collapse in AF spacetime starting from infinity
at rest) it can be shown quite generally that

if initially one has a (sub-extremal) BH, then after the shell collapses there will be
a larger horizon covering the singularity.

CCC is preserved
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+ Again, consider collapse in AF spacetime starting from infinity at rest.
This imposes w=0 and M+=M.+ M.

+ Moreover, we can use scaling invariance to set M.=1.
This leaves just two parameters: Mp and a
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Conclusions

+ Introduced a convenient setup to study effects of rotation on gravitational collapse
of matter shells.
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exist in AdS.

< Full collapse onto rotating, asymptotically flat, BH (satisfying weak energy condition)
respects the CCC.
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