

Rotating shells, non-spherical gravitational collapse and cosmic censorship

Jorge V. Rocha (Centra-IST, U.Lisboa)

JVR
T. Delsate, JVR and R. Santarelli
JVR, R. Santarelli, and T. Delsate

Int. J. Mod. Phys. D24, 1542002 (2015) Phys. Rev. D89, 121501(R) (2014) Phys. Rev. D89, 104006 (2014)

[1501.06724 [gr-qc]] [1405.1433 [gr-qc]] [1402.4161 [gr-qc]]

Belém, UF Pará IV Amazonian Workshop on Black Holes and Analogue Models of Gravity May 15, 2015

There is overwhelming observational evidence that black holes (BHs) exist.
 [M. Begelman, Science 300 (2003)]

- There is overwhelming observational evidence that black holes (BHs) exist.
 [M. Begelman, Science 300 (2003)]
- BHs are theoretically predicted as the endpoint of gravitational collapse of sufficiently massive stars.

- There is overwhelming observational evidence that black holes (BHs) exist.
 [M. Begelman, Science 300 (2003)]
- BHs are theoretically predicted as the endpoint of gravitational collapse of sufficiently massive stars.

- There is overwhelming observational evidence that black holes (BHs) exist.
 [M. Begelman, Science 300 (2003)]
- BHs are theoretically predicted as the endpoint of gravitational collapse of sufficiently massive stars.

- There is overwhelming observational evidence that black holes (BHs) exist.
 [M. Begelman, Science 300 (2003)]
- BHs are theoretically predicted as the endpoint of gravitational collapse of sufficiently massive stars.
- + The vast majority of celestial objects are rotating. Black holes are no exception.

ESO / J. Pérez

+ Good understanding of rotating but stationary BHs.

- + Good understanding of rotating but stationary BHs.
- + Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

non-spherical gravitational collapse

- + Good understanding of rotating but stationary BHs.
- + Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

non-spherical gravitational collapse

Why should we care?

- + Good understanding of rotating but stationary BHs.
- + Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

non-spherical gravitational collapse

Why should we care?

I. realistic collapses should include rotation;

- + Good understanding of rotating but stationary BHs.
- + Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

non-spherical gravitational collapse

Why should we care?

- I. realistic collapses should include rotation;
- known 'violations' of the cosmic censorship conjecture (CCC) occur in non-rotating — thus non-generic — settings;

- + Good understanding of rotating but stationary BHs.
- + Poor control over highly dynamical scenarios.

In particular, little is known about gravitational collapse with rotation.

non-spherical gravitational collapse

Why should we care?

- I. realistic collapses should include rotation;
- known 'violations' of the cosmic censorship conjecture (CCC) occur in non-rotating — thus non-generic — settings;
- 3. rotation introduces instabilities (e.g. superradiance).

Advantage of non-rotating setups is their large amount of symmetry.
 Spherical symmetry reduces problem to 1+1 dims.

- Advantage of non-rotating setups is their large amount of symmetry.
 Spherical symmetry reduces problem to 1+1 dims.
- + ∃ a larger class of (rotating) BH spacetimes that are stationary and whose metric depends on a single radial coordinate:

cohomogeneity-1 solutions

- Advantage of non-rotating setups is their large amount of symmetry.
 Spherical symmetry reduces problem to 1+1 dims.
- + ∃ a larger class of (rotating) BH spacetimes that are stationary and whose metric depends on a single radial coordinate:

- Advantage of non-rotating setups is their large amount of symmetry.
 Spherical symmetry reduces problem to 1+1 dims.
- + ∃ a larger class of (rotating) BH spacetimes that are stationary and whose metric depends on a single radial coordinate:

+ The price to pay for the convenience provided by cohomogeneity-1 spacetimes is the restriction to higher (odd) dimensions, D=2N+3 with N=1, 2, 3, ...

+ Myers-Perry(-AdS) BHs in D=2N+3 dims possess isometry group $\mathbb{R} \times U(1)^{N+1}$.

- + Myers-Perry(-AdS) BHs in D=2N+3 dims possess isometry group $\mathbb{R} \times U(1)^{N+1}$.
- + When all spin parameters are set equal, $a_i = a$, this symmetry is enhanced:

 $\mathbb{R} \times U(1)^{N+1} \longrightarrow \mathbb{R} \times U(N+1)$

and coordinates can be found that reflect this large amount of symmetry, such that the metric depends on just one (radial) coordinate.

[Frolov-Stojkovic (2002)] [Lucietti-Kunduri-Reall (2006)]

- + Myers-Perry(-AdS) BHs in D=2N+3 dims possess isometry group $\mathbb{R} \times U(1)^{N+1}$.
- + When all spin parameters are set equal, $a_i = a$, this symmetry is enhanced:

 $\mathbb{R} \times U(1)^{N+1} \longrightarrow \mathbb{R} \times U(N+1)$

and coordinates can be found that reflect this large amount of symmetry, such that the metric depends on just one (radial) coordinate.

[Frolov-Stojkovic (2002)] [Lucietti-Kunduri-Reall (2006)]

- + Constant t and r sections are squashed (2N+1)-spheres.
- + S^{2N+1} can be written as a S^1 bundle over CP^N .

+ The metric for these cohomogeneity-I BHs is

 $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)^{2}dt^{2} + g(r)^{2}dr^{2} + r^{2}\widehat{g}_{ab}dx^{a}dx^{b} + h(r)^{2}\left[d\psi + A_{a}dx^{a} - \Omega(r)dt\right]^{2}$

+ The metric for these cohomogeneity-I BHs is

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)^{2}dt^{2} + g(r)^{2}dr^{2} + r^{2}\hat{g}_{ab}dx^{a}dx^{b} + h(r)^{2}\left[d\psi + A_{a}dx^{a} - \Omega(r)dt\right]^{2}$$

where

$$g(r)^{2} = \left(1 + \frac{r^{2}}{\ell^{2}} - \frac{2M\Xi}{r^{2N}} + \frac{2Ma^{2}}{r^{2N+2}}\right)^{-1}, \qquad f(r) = \frac{r}{g(r)h(r)}$$
$$h(r)^{2} = r^{2} \left(1 + \frac{2Ma^{2}}{r^{2N+2}}\right), \qquad \Omega(r) = \frac{2Ma}{r^{2N}h(r)^{2}}, \qquad \Xi = 1 - \frac{a^{2}}{\ell^{2}}.$$

+ The metric for these cohomogeneity-I BHs is

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)^{2}dt^{2} + g(r)^{2}dr^{2} + r^{2}\widehat{g}_{ab}dx^{a}dx^{b} + h(r)^{2}\left[d\psi + A_{a}dx^{a} - \Omega(r)dt\right]^{2}$$

where

$$g(r)^2 = \left(1 + \frac{r^2}{\ell^2} - \frac{2M\Xi}{r^{2N}} + \frac{2Ma^2}{r^{2N+2}}\right)^{-1}, \qquad f(r) = \frac{r}{g(r)h(r)},$$
$$h(r)^2 = r^2 \left(1 + \frac{2Ma^2}{r^{2N+2}}\right), \qquad \Omega(r) = \frac{2Ma}{r^{2N}h(r)^2}, \qquad \Xi = 1 - \frac{a^2}{\ell^2}.$$

 \widehat{g}_{ab} denotes the Fubini-Study metric on CP^N and $A_a dx^a$ is its Kahler potential.

For N=1:
$$\widehat{g}_{ab}dx^a dx^b = \frac{1}{4} \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right), \qquad A = \frac{1}{2} \cos \theta \, d\phi$$

+ The metric for these cohomogeneity-I BHs is

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -f(r)^{2}dt^{2} + g(r)^{2}dr^{2} + r^{2}\widehat{g}_{ab}dx^{a}dx^{b} + h(r)^{2}\left[d\psi + A_{a}dx^{a} - \Omega(r)dt\right]^{2}$$

where

$$g(r)^2 = \left(1 + \frac{r^2}{\ell^2} - \frac{2M\Xi}{r^{2N}} + \frac{2Ma^2}{r^{2N+2}}\right)^{-1}, \qquad f(r) = \frac{r}{g(r)h(r)},$$
$$h(r)^2 = r^2 \left(1 + \frac{2Ma^2}{r^{2N+2}}\right), \qquad \Omega(r) = \frac{2Ma}{r^{2N}h(r)^2}, \qquad \Xi = 1 - \frac{a^2}{\ell^2}.$$

 \widehat{g}_{ab} denotes the Fubini-Study metric on CP^N and $A_a dx^a$ is its Kahler potential.

For N=1:
$$\widehat{g}_{ab}dx^a dx^b = \frac{1}{4} \left(d\theta^2 + \sin^2 \theta \, d\phi^2 \right), \qquad A = \frac{1}{2} \cos \theta \, d\phi$$

+ n.b. These solutions accommodate a non-vanishing cosmological constant:

$$R_{\mu\nu} = -(D-1)\ell^{-2}g_{\mu\nu}$$

Background: Thin shells in cohomogeneity-1 spacetimes

The cohomogeneity-I property makes an exact (thin-shell) calculation possible,
 'gluing' an interior to an exterior geometry.
 [Israel (1966)] [Kuchar (1968)]
 [Boulware (1973)] [Gao-Lemos (2008)]

Background: Thin shells in cohomogeneity-1 spacetimes

- The cohomogeneity-I property makes an exact (thin-shell) calculation possible,
 'gluing' an interior to an exterior geometry.
 [Israel (1966)] [Kuchar (1968)]
 [Boulware (1973)] [Gao-Lemos (2008)]
- Take advantage of high degree of symmetry: consider shells that respect full set of spatial isometries. Focus on N=1, for simplicity.

Background: Thin shells in cohomogeneity-1 spacetimes

- The cohomogeneity-I property makes an exact (thin-shell) calculation possible,
 'gluing' an interior to an exterior geometry.
 [Israel (1966)] [Kuchar (1968)]
 [Boulware (1973)] [Gao-Lemos (2008)]
- Take advantage of high degree of symmetry: consider shells that respect full set of spatial isometries. Focus on N=1, for simplicity.
- + n.b. The dynamics on the $CP^1 \cong S^2$ and on the S^1 separate. All traces of the rotation show up in the $\{r, \psi\}$ plane.

+ Use junction conditions along a timelike hypersurface, $t = T(\tau), r = \mathcal{R}(\tau)$:

$$\mathfrak{g}_{ij}^{(+)} = \mathfrak{g}_{ij}^{(-)} \equiv \mathfrak{g}_{ij} ,$$

$$(k_{ij}^{(+)} - k_{ij}^{(-)}) - \mathfrak{g}_{ij}(k^{(+)} - k^{(-)}) = -8\pi G \mathcal{S}_{ij}$$

+ Use junction conditions along a timelike hypersurface, $t = T(\tau), r = \mathcal{R}(\tau)$:

induced metric $\longrightarrow \mathfrak{g}_{ij}^{(+)} = \mathfrak{g}_{ij}^{(-)} \equiv \mathfrak{g}_{ij}$, extrinsic curvature $\longrightarrow (k_{ij}^{(+)} - k_{ij}^{(-)}) - \mathfrak{g}_{ij}(k^{(+)} - k^{(-)}) = -8\pi G S_{ij}$ shell's stress-energy tensor

+ Use junction conditions along a timelike hypersurface, $t = T(\tau), r = \mathcal{R}(\tau)$:

induced metric $\longrightarrow \mathfrak{g}_{ij}^{(+)} = \mathfrak{g}_{ij}^{(-)} \equiv \mathfrak{g}_{ij}$, extrinsic curvature $\longrightarrow (k_{ij}^{(+)} - k_{ij}^{(-)}) - \mathfrak{g}_{ij}(k^{(+)} - k^{(-)}) = -8\pi G S_{ij}$ shell's stress-energy tensor

This formalism has been applied to rotating spacetimes in (2+1) dims. [Crisóstomo-Olea (2004)] [Mann-Oh-Park (2009)]

+ Use junction conditions along a timelike hypersurface, $t = T(\tau), r = \mathcal{R}(\tau)$:

induced metric $\longrightarrow \mathfrak{g}_{ij}^{(+)} = \mathfrak{g}_{ij}^{(-)} \equiv \mathfrak{g}_{ij}$, extrinsic curvature $\longrightarrow (k_{ij}^{(+)} - k_{ij}^{(-)}) - \mathfrak{g}_{ij}(k^{(+)} - k^{(-)}) = -8\pi G S_{ij}$ shell's stress-energy tensor

This formalism has been applied to rotating spacetimes in (2+1) dims. [Crisóstomo-Olea (2004)] [Mann-Oh-Park (2009)]

+ For *D*>3, we get one additional constraint from the 1st junction condition:

$$M_{+}a_{+}^{2} = M_{-}a_{-}^{2}$$
 $h_{+}(\mathcal{R}) = h_{-}(\mathcal{R}) \equiv h(\mathcal{R})$

+ Use junction conditions along a timelike hypersurface, $t = T(\tau), r = R(\tau)$:

induced metric $\longrightarrow \mathfrak{g}_{ij}^{(+)} = \mathfrak{g}_{ij}^{(-)} \equiv \mathfrak{g}_{ij}$, extrinsic curvature $\longrightarrow (k_{ij}^{(+)} - k_{ij}^{(-)}) - \mathfrak{g}_{ij}(k^{(+)} - k^{(-)}) = -8\pi G S_{ij}$ shell's stress-energy tensor

This formalism has been applied to rotating spacetimes in (2+1) dims. [Crisóstomo-Olea (2004)] [Mann-Oh-Park (2009)]

+ For *D*>3, we get one additional constraint from the 1st junction condition:

 $M_{+}a_{+}^{2} = M_{-}a_{-}^{2}$ $h_{+}(\mathcal{R}) = h_{-}(\mathcal{R}) \equiv h(\mathcal{R})$

 The 2nd junction condition requires the shell stress-energy tensor to take the form of an imperfect fluid:

$$\mathcal{S}_{ij} = (\rho + P)u_i u_j + P \mathfrak{g}_{ij} + 2\varphi \, u_{(i}\xi_{j)} + \Delta P \, \mathcal{R}^2 \widehat{g}_{ij}$$

+ Use junction conditions along a timelike hypersurface, $t = T(\tau), r = \mathcal{R}(\tau)$:

induced metric $\longrightarrow \mathfrak{g}_{ij}^{(+)} = \mathfrak{g}_{ij}^{(-)} \equiv \mathfrak{g}_{ij}$, extrinsic curvature $\longrightarrow (k_{ij}^{(+)} - k_{ij}^{(-)}) - \mathfrak{g}_{ij}(k^{(+)} - k^{(-)}) = -8\pi G S_{ij}$ shell's stress-energy tensor

This formalism has been applied to rotating spacetimes in (2+1) dims. [Crisóstomo-Olea (2004)] [Mann-Oh-Park (2009)]

+ For *D*>3, we get one additional constraint from the 1st junction condition:

 $M_{+}a_{+}^{2} = M_{-}a_{-}^{2}$ $h_{+}(\mathcal{R}) = h_{-}(\mathcal{R}) \equiv h(\mathcal{R})$

 The 2nd junction condition requires the shell stress-energy tensor to take the form of an imperfect fluid:

$$\mathcal{S}_{ij} = (\rho + P)u_iu_j + P \mathfrak{g}_{ij} + 2\varphi u_{(i}\xi_{j)} + \Delta P \mathcal{R}^2 \widehat{g}_{ij}$$

energy density pressure intrinsic momentum / heat flow pressure anisotropy

Rotating thin shells: Equation of state and shell equation of motion

+ The stress-energy tensor components are dictated by the metric components:

$$\rho = -\frac{(\beta_+ - \beta_-)(\mathcal{R}^2 h)'}{8\pi \mathcal{R}^3}$$
$$P = \frac{h}{8\pi \mathcal{R}^3} \left[\mathcal{R}^2 (\beta_+ - \beta_-) \right]'$$

$$\varphi = -\frac{(\mathcal{J}_{+} - \mathcal{J}_{-})(\mathcal{R}h)'}{4\pi^{2}\mathcal{R}^{4}h}$$
$$\Delta P = \frac{(\beta_{+} - \beta_{-})}{8\pi} \left[\frac{h}{\mathcal{R}}\right]'$$

where $\beta_{\pm} \equiv f_{\pm} \sqrt{1 + g_{\pm}^2 \dot{\mathcal{R}}^2}$.

Rotating thin shells: Equation of state and shell equation of motion

+ The stress-energy tensor components are dictated by the metric components:

$$\rho = -\frac{(\beta_+ - \beta_-)(\mathcal{R}^2 h)'}{8\pi \mathcal{R}^3}$$
$$P = \frac{h}{8\pi \mathcal{R}^3} \left[\mathcal{R}^2(\beta_+ - \beta_-)\right]'$$

$$\varphi = -\frac{(\mathcal{J}_{+} - \mathcal{J}_{-})(\mathcal{R}h)'}{4\pi^{2}\mathcal{R}^{4}h}$$
$$\Delta P = \frac{(\beta_{+} - \beta_{-})}{8\pi} \left[\frac{h}{\mathcal{R}}\right]'$$

where $\beta_{\pm} \equiv f_{\pm} \sqrt{1 + g_{\pm}^2 \dot{\mathcal{R}}^2}$.

+ For simplicity, assume a linear equation of state, $P = w\rho$. (Other EoS can be considered, e.g., polytropic)

Rotating thin shells: Equation of state and shell equation of motion

+ The stress-energy tensor components are dictated by the metric components:

$$\rho = -\frac{(\beta_+ - \beta_-)(\mathcal{R}^2 h)'}{8\pi \mathcal{R}^3}$$
$$P = \frac{h}{8\pi \mathcal{R}^3} \left[\mathcal{R}^2(\beta_+ - \beta_-)\right]'$$

where
$$\beta_{\pm}\equiv f_{\pm}\sqrt{1+g_{\pm}^2\dot{\mathcal{R}}^2}$$
 .

$$\varphi = -\frac{(\mathcal{J}_{+} - \mathcal{J}_{-})(\mathcal{R}h)'}{4\pi^{2}\mathcal{R}^{4}h}$$
$$\Delta P = \frac{(\beta_{+} - \beta_{-})}{8\pi} \left[\frac{h}{\mathcal{R}}\right]'$$

- + For simplicity, assume a linear equation of state, $P = w\rho$. (Other EoS can be considered, e.g., polytropic)
- + These equations can be integrated, yielding the shell's equation of motion:

$$\dot{\mathcal{R}}^2 + V_{\rm eff}(\mathcal{R}) = 0$$

+ For generic values of *N*, and a linear equation of state:

$$\begin{aligned} \dot{\mathcal{R}}^{2} + V_{\text{eff}}(\mathcal{R}) &= 0 \\ V_{\text{eff}}(\mathcal{R}) &= 1 + \frac{\mathcal{R}^{2}}{\ell^{2}} + \frac{2Ma^{2}}{\ell^{2}\mathcal{R}^{2N}} + \frac{2Ma^{2}}{\mathcal{R}^{2N+2}} - \frac{M_{+} + M_{-}}{\mathcal{R}^{2N}} \\ &- \left(\frac{M_{+} - M_{-}}{m_{0}}\right)^{2} \left(\frac{\mathcal{R}^{2N}}{m_{0}}\right)^{\frac{2N+1}{N}w} \left(1 + \frac{2Ma^{2}}{\mathcal{R}^{2N+2}}\right)^{w-1} \\ &- \frac{1}{4} \left(\frac{m_{0}}{\mathcal{R}^{2N}}\right)^{2 + \frac{2N+1}{N}w} \left(1 + \frac{2Ma^{2}}{\mathcal{R}^{2N+2}}\right)^{1-w}.\end{aligned}$$

+ For generic values of *N*, and a linear equation of state:

$$\begin{aligned} \dot{\mathcal{R}}^2 + V_{\text{eff}}(\mathcal{R}) &= 0 \end{aligned} \qquad V_{\text{eff}}(\mathcal{R}) &= 1 + \frac{\mathcal{R}^2}{\ell^2} + \frac{2Ma^2}{\ell^2 \mathcal{R}^{2N}} + \frac{2Ma^2}{\mathcal{R}^{2N+2}} - \frac{M_+ + M_-}{\mathcal{R}^{2N}} \\ &- \left(\frac{M_+ - M_-}{m_0}\right)^2 \left(\frac{\mathcal{R}^{2N}}{m_0}\right)^{\frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{\mathcal{R}^{2N+2}}\right)^{w-1} \\ &- \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^{2N}}\right)^{2 + \frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{\mathcal{R}^{2N+2}}\right)^{1-w}. \end{aligned}$$

+ For N=1 and large values of \mathcal{R} :

$$V_{\text{eff}} \approx 1 + \frac{\mathcal{R}^2}{\ell^2} - \left(\frac{\Delta M}{m_0}\right)^2 \left(\frac{\mathcal{R}^2}{m_0}\right)^{3w} - \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^2}\right)^{2+3w}$$

+ For generic values of *N*, and a linear equation of state:

$$\begin{aligned} \dot{\mathcal{R}}^2 + V_{\text{eff}}(\mathcal{R}) &= 0 \\ V_{\text{eff}}(\mathcal{R}) &= 1 + \frac{\mathcal{R}^2}{\ell^2} + \frac{2Ma^2}{\ell^2 \mathcal{R}^{2N}} + \frac{2Ma^2}{\mathcal{R}^{2N+2}} - \frac{M_+ + M_-}{\mathcal{R}^{2N}} \\ &- \left(\frac{M_+ - M_-}{m_0}\right)^2 \left(\frac{\mathcal{R}^{2N}}{m_0}\right)^{\frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{\mathcal{R}^{2N+2}}\right)^{w-1} \\ &- \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^{2N}}\right)^{2 + \frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{\mathcal{R}^{2N+2}}\right)^{1-w}. \end{aligned}$$

+ For N=1 and large values of \mathcal{R} :

$$V_{\text{eff}} \approx 1 + \frac{\mathcal{R}^2}{\ell^2} - \left(\frac{\Delta M}{m_0}\right)^2 \left(\frac{\mathcal{R}^2}{m_0}\right)^{3w} - \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^2}\right)^{2+3w}$$

+ For N=1 and small values of \mathcal{R} :

$$V_{\text{eff}} \approx \frac{2Ma^2}{\mathcal{R}^4} - \frac{M_+ + M_-}{\mathcal{R}^2} - \frac{1}{4} \left(\frac{2Ma^2}{m_0^2}\right)^{1-w} \left(\frac{m_0}{\mathcal{R}^2}\right)^{4+w} - \left(\frac{2Ma^2}{m_0^2}\right)^{w-1} \left(\frac{\Delta M}{m_0}\right)^2 \left(\frac{\mathcal{R}^2}{m_0}\right)^{2+w}$$

+ For generic values of *N*, and a linear equation of state:

$$\begin{aligned} \dot{\mathcal{R}}^2 + V_{\text{eff}}(\mathcal{R}) &= 0 \\ V_{\text{eff}}(\mathcal{R}) &= 1 + \frac{\mathcal{R}^2}{\ell^2} + \frac{2Ma^2}{\ell^2 \mathcal{R}^{2N}} + \frac{2Ma^2}{\mathcal{R}^{2N+2}} - \frac{M_+ + M_-}{\mathcal{R}^{2N}} \\ &- \left(\frac{M_+ - M_-}{m_0}\right)^2 \left(\frac{\mathcal{R}^{2N}}{m_0}\right)^{\frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{\mathcal{R}^{2N+2}}\right)^{w-1} \\ &- \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^{2N}}\right)^{2 + \frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{\mathcal{R}^{2N+2}}\right)^{1-w}. \end{aligned}$$

For N=1 and large values of
$$\mathcal{R}$$
:
 $V_{\text{eff}} \approx 1 + \frac{\mathcal{R}^2}{\ell^2} + \left(\frac{\Delta M}{m_0}\right)^2 \left(\frac{\mathcal{R}^2}{m_0}\right)^{3w} - \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^2}\right)^{2+3w}$

+ For N=1 and small values of \mathcal{R} :

$$V_{\text{eff}} \approx \frac{2Ma^2}{\mathcal{R}^4} - \frac{M_+ + M_-}{\mathcal{R}^2} - \frac{1}{4} \left(\frac{2Ma^2}{m_0^2}\right)^{1-w} \left(\frac{m_0}{\mathcal{R}^2}\right)^{4+w} - \left(\frac{2Ma^2}{m_0^2}\right)^{w-1} \left(\frac{\Delta M}{m_0}\right)^2 \left(\frac{\mathcal{R}^2}{m_0}\right)^{2+w}$$

+ For generic values of *N*, and a linear equation of state:

$$\begin{aligned} \dot{\mathcal{R}}^2 + V_{\text{eff}}(\mathcal{R}) &= 0 \\ V_{\text{eff}}(\mathcal{R}) &= 1 + \frac{\mathcal{R}^2}{\ell^2} + \frac{2Ma^2}{\ell^2 \mathcal{R}^{2N}} + \frac{2Ma^2}{\mathcal{R}^{2N+2}} - \frac{M_+ + M_-}{\mathcal{R}^{2N}} \\ &- \left(\frac{M_+ - M_-}{m_0}\right)^2 \left(\frac{\mathcal{R}^{2N}}{m_0}\right)^{\frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{\mathcal{R}^{2N+2}}\right)^{w-1} \\ &- \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^{2N}}\right)^{2 + \frac{2N+1}{N}w} \left(1 + \frac{2Ma^2}{\mathcal{R}^{2N+2}}\right)^{1-w}. \end{aligned}$$

+ For N=1 and large values of \mathcal{R} :

$$V_{\text{eff}} \approx 1 + \frac{\mathcal{R}^2}{\ell^2} + \left(\frac{\Delta M}{m_0}\right)^2 \left(\frac{\mathcal{R}^2}{m_0}\right)^{3w} - \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^2}\right)^{2+3w}$$

+ For N=1 and small values of \mathcal{R} :

$$V_{\text{eff}} \approx \frac{2Ma^2}{\mathcal{R}^4} - \frac{M_+ + M_-}{\mathcal{R}^2} - \frac{1}{4} \left(\frac{2Ma^2}{m_0^2}\right)^{1-w} \left(\frac{m_0}{\mathcal{R}^2}\right)^{4+w} - \left(\frac{2Ma^2}{m_0^2}\right)^{w-1} \left(\frac{\Delta M}{m_0}\right)^2 \left(\frac{\mathcal{R}^2}{m_0}\right)^{2+w}$$

Rotating thin shells: Stationary shell around a BH in AdS

+

confining nature of the potential (due to negative cosmological constant)

+

centrifugal barrier (due to rotation)

Rotating thin shells: Stationary shell around a BH in AdS

confining nature of the potential (due to negative cosmological constant)

 \blacklozenge

centrifugal barrier (due to rotation)

 \exists (stable) stationary configurations of shells around rotating BHs in AdS

 \pm

(stable) stationary configurations of shells around rotating BHs in AdS

[Delsate, JVR, Santarelli (2014)]

- + Take asymptotically flat limit, $\ell \to \infty$.
- + Collapse starting from rest at infinity imposes: $\longrightarrow w = 0$ i.e., matter on the shell has EoS of dust

 $m_0 = \Delta M$ i.e., the increment in mass of the spacetime is given precisely by the mass of the shell

- + Take asymptotically flat limit, $\ell \to \infty$.
- + Collapse starting from rest at infinity imposes: $\longrightarrow w = 0$ i.e., matter on the shell has EoS of dust

 $m_0 = \Delta M$ i.e., the increment in mass of the spacetime is given precisely by the mass of the shell

+ For N=1 and large values of \mathcal{R} :

$$V_{\text{eff}} \approx 1 + \frac{\mathcal{R}^2}{\ell^2} - \left(\frac{\Delta M}{m_0}\right)^2 \left(\frac{\mathcal{R}^2}{m_0}\right)^{3w} - \frac{1}{4} \left(\frac{m_0}{\mathcal{R}^2}\right)^{2+3w}$$

- + Take asymptotically flat limit, $\ell \to \infty$.
- + Collapse starting from rest at infinity imposes: $\longrightarrow w = 0$ i.e., matter on the shell has EoS of dust

 $m_0 = \Delta M$ i.e., the increment in mass of the spacetime is given precisely by the mass of the shell

- Take asymptotically flat limit, $\ell \to \infty$.
- Collapse starting from rest at infinity imposes: $\rightarrow w = 0$ i.e., matter on the shell +

has EoS of dust

$$m_0 = \Delta M$$
 i.e., the increment in
mass of the spacetime
is given precisely by the
mass of the shell

[Delsate, JVR, Santarelli (2014)]

- Take asymptotically flat limit, $\ell \to \infty$.
- Collapse starting from rest at infinity imposes: $\rightarrow w = 0$ i.e., matter on the shell +

has EoS of dust

$$m_0 = \Delta M$$
 i.e., the increment in
mass of the spacetime
is given precisely by the
mass of the shell

Weak energy conditions (WEC) are satisfied

[Delsate, JVR, Santarelli (2014)]

Rotating thin shells: Cosmic censorship

 Under the assumed conditions (collapse in AF spacetime starting from infinity at rest) it can be shown quite generally that

if initially one has a (sub-extremal) BH, then after the shell collapses there will be a larger horizon covering the singularity.

Rotating thin shells: Cosmic censorship

 Under the assumed conditions (collapse in AF spacetime starting from infinity at rest) it can be shown quite generally that

if initially one has a (sub-extremal) BH, then after the shell collapses there will be a larger horizon covering the singularity.

$$g_{+}^{-2}(r_{-}) = g_{+}^{-2}(r_{-}) - g_{-}^{-2}(r_{-}) = -\frac{2(M_{+} - M_{-})}{r_{-}^{2N}} = -\frac{2m_{0}}{r_{-}^{2N}} \le 0$$

Rotating thin shells: Cosmic censorship

 Under the assumed conditions (collapse in AF spacetime starting from infinity at rest) it can be shown quite generally that

if initially one has a (sub-extremal) BH, then after the shell collapses there will be a larger horizon covering the singularity.

$$g_{+}^{-2}(r_{-}) = g_{+}^{-2}(r_{-}) - g_{-}^{-2}(r_{-}) = -\frac{2(M_{+} - M_{-})}{r^{2N}} = -\frac{2m_{0}}{r^{2N}} \le 0$$

CCC is preserved

Full collapse

+ Again, consider collapse in AF spacetime starting from infinity at rest. This imposes w=0 and $M_+=M_-+m_0$.

- + Again, consider collapse in AF spacetime starting from infinity at rest. This imposes w=0 and $M_+=M_-+m_0$.
- Moreover, we can use scaling invariance to set M₋=1.
 This leaves just two parameters: m₀ and a.

- + Again, consider collapse in AF spacetime starting from infinity at rest. This imposes w=0 and $M_+=M_-+m_0$.
- Moreover, we can use scaling invariance to set M₋=1.
 This leaves just two parameters: m₀ and a.

- + Again, consider collapse in AF spacetime starting from infinity at rest. This imposes w=0 and $M_+=M_-+m_0$.
- Moreover, we can use scaling invariance to set M₋=1.
 This leaves just two parameters: m₀ and a.

- + Again, consider collapse in AF spacetime starting from infinity at rest. This imposes w=0 and $M_+=M_-+m_0$.
- Moreover, we can use scaling invariance to set M₋=1.
 This leaves just two parameters: m₀ and a.

- + Again, consider collapse in AF spacetime starting from infinity at rest. This imposes w=0 and $M_+=M_-+m_0$.
- Moreover, we can use scaling invariance to set M₋=1.
 This leaves just two parameters: m₀ and a.

extremal exterior

- + Again, consider collapse in AF spacetime starting from infinity at rest. This imposes w=0 and $M_+=M_-+m_0$.
- + Moreover, we can use scaling invariance to set $M_{-}=1$. This leaves just two parameters: m_0 and a.

- + Again, consider collapse in AF spacetime starting from infinity at rest. This imposes w=0 and $M_+=M_-+m_0$.
- Moreover, we can use scaling invariance to set M₋=1.
 This leaves just two parameters: m₀ and a.

Conclusions

 Introduced a convenient setup to study effects of rotation on gravitational collapse of matter shells.

Conclusions

- Introduced a convenient setup to study effects of rotation on gravitational collapse of matter shells.
- + Matching two rotating BH spacetimes across a thin shell is possible.
 - It requires matter on the shell to be an imperfect fluid.
 - Stationary solutions describing rotating shells of matter surrounding spinning BHs exist in AdS.
 - Full collapse onto rotating, asymptotically flat, BH (satisfying weak energy condition) respects the CCC.

Conclusions

- Introduced a convenient setup to study effects of rotation on gravitational collapse of matter shells.
- + Matching two rotating BH spacetimes across a thin shell is possible.
 - It requires matter on the shell to be an imperfect fluid.
 - Stationary solutions describing rotating shells of matter surrounding spinning BHs exist in AdS.
 - Full collapse onto rotating, asymptotically flat, BH (satisfying weak energy condition) respects the CCC.

Thank you.