

Gauge-invariant observables in perturbative quantum gravity

Markus B. Fröb

University of York, United Kingdom

It is well known that the diffeomorphism invariance of gravitational theories makes it impossible to define local and gauge-invariant observables in perturbative (quantum) gravity, except at linear order. While in flat space on can study the S-Matrix, which is a gauge-invariant global observable, no analogue exists in a general curved space. Relational observables (i.e., the value of one field at the point where a second field has a prescribed value) are natural candidates for observables in (quantum) gravity, but they are not local when constructed around flat space or around a cosmological (FLRW) background spacetime due to the high symmetry of the latter.

We present two different approaches to this problem: a) correlation functions at fixed geodesic distance, and b) a construction of invariant coordinates, for which explicit and fully renormalized results for one-graviton-loop corrections to two-point functions and coupling constants have been obtained. While the former does not seem viable, the latter approach has a number of advantages:

- it can be computed algorithmically up to arbitrary orders in perturbation theory,
- it is renormalizable, and gives finite results without uncontrolled approximations and/or smearings,
- it is independent of the dynamics of the gravitational theory, and thus can be used to compare different models of gravity and inflation including corrections from graviton loops,
- it reduces at linear order to the well-known gauge-invariant cosmological perturbations.