Numerical-relativity modelling of astrophysical sources of gravitational waves

José Antonio Font Universitat de València www.uv.es/virgogroup

GW150914: First observation of GWs

Numerical Relativity Binary black hole merger

Neutron star binaries have been **observed** in the Galaxy. Black hole binaries? **Hypothetical system.**

NR simulation of a BNS merger

0 0.00 22.5 time [ms]

Rezzolla+ (2011)

Our basic theoretical model

Our best approximation to the "realistic" modelling of dynamical evolutions in relativistic astrophysics (state-of-the-art?)

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu} \quad \text{(field eqs : } 6 + 6 + 3 + 1)$$
$$\nabla_{\mu}T^{\mu\nu} = 0 , \qquad \text{(cons. en./mom. : } 3 + 1)$$
$$\nabla_{\mu}(\rho u^{\mu}) = 0 , \qquad \text{(cons. of baryon no : } 1)$$
$$p = p(\rho, \epsilon, \ldots) . \qquad \text{(EoS : } 1 + \ldots)$$

Improvements necessary: microphysics for thermal EoS, magnetic fields, dissipative fluids, radiative transfer, ... current frontier.

$$\nabla^*_{\nu} F^{\mu\nu} = 0$$
, (Maxwell eqs. : induction, zero div.)
 $T_{\mu\nu} = T^{\text{fluid}}_{\mu\nu} + T^{\text{em}}_{\mu\nu} + \dots$

Outline

Lecture 1: Hydrodynamics and MHD

Lecture 2: Einstein's equations

Lecture 3: Numerical methods

Lecture 4: Applications in astrophysics

- Binary neutron star mergers
- Core collapse supernovae

Lecture 1 Hydrodynamics and MHD

General relativity and relativistic hydrodynamics play a major role in the description of gravitational collapse leading to the formation of compact objects (neutron stars and black holes).

Prime Sources of Gravitational Radiation.

Time-dependent evolutions of fluid flow coupled to the spacetime geometry (Einstein's equations) possible through accurate, large-scale numerical simulations.

Some scenarios can be described in the test-fluid approximation: GRHD/GRMHD computations in curved backgrounds (highly mature).

GRHD/GRMHD equations are nonlinear hyperbolic systems. Solid mathematical foundations and accurate numerical methodology imported from CFD. A "preferred" choice: highresolution shock-capturing schemes written in conservation form. (see Lecture 3)

Fluid dynamics

The defining property of fluids (liquids and gases) lies in the ease with which they may be deformed.

A "simple fluid" may be defined as a material such that the relative positions of its constituent elements change by a large amount when suitable forces, however small in magnitude, are applied to the material.

For most simple molecules, stable equilibrium between two molecules is achieved when their separation $d_0 \sim 3-4 \times 10^{-8}$ cm.

Average spacing for gases ~10 d₀, while in liquids and solids is ~ d₀.

Fluid dynamics deals with the **behaviour of matter in the large** (average quantities per unit volume), on a macroscopic scale large compared with the distance between molecules, $|>>d_0$, not taking into account the molecular structure of fluids.

Macroscopic behaviour of fluids assumed to be continuous in structure, and physical quantities such as mass, density, or momentum contained within a given small volume are regarded as uniformly spread over that volume.

The quantities that characterize a fluid (in the continuum limit) are functions of time and position:

$$\begin{array}{ll} \rho &: & (t,\vec{r}) \in \mathbb{R}^4 \to \rho(t,\vec{r}) \in \mathbb{R} & \text{density (scalar field)} \\ \vec{v} &: & (t,\vec{r}) \in \mathbb{R}^4 \to \vec{v}(t,\vec{r}) \in \mathbb{R}^3 & \text{velocity (vector field)} \\ \Pi &: & (t,\vec{r}) \in \mathbb{R}^4 \to \Pi(t,\vec{r}) \in \mathbb{R}^9 & \text{pressure tensor (tensor field)} \end{array}$$

Eulerian description: time variation of fluid properties in a fixed position in space.

Lagrangian description: variation of properties of a "fluid particle" along its motion.

Both descriptions are equivalent: there exists a change of variables between them which is related to the Jacobian of the so-called "flux function" which describes the trajectories of fluid particles.

Transport theorems (Reynolds-Leibniz)

Generalization to 3D of the Leibniz integral rule (differentiation under the integral sign).

• Scalar field

$$\frac{d}{dt} \int_{V_t} f \, dV = \int_{V_t} \left[\frac{\partial f}{\partial t} + \nabla \cdot (f \vec{v}) \right] \, dV, \qquad \qquad f = f(t, \vec{r})$$

Vector field

$$\frac{d}{dt}\int_{V_t} \vec{F} \, dV = \int_{V_t} \left[\frac{\partial \vec{F}}{\partial t} + (\vec{v} \cdot \nabla)\vec{F} + \vec{F}(\nabla \cdot \vec{v}) \right] \, dV, \quad \vec{F} = \vec{F}(t, \vec{r})$$

 V_t is a volume which moves with the fluid (Lagrangian description; image of V_0 by the diffeomorphism given by the flux function).

Mass conservation (continuity equation)

Let V_t be a volume which moves with the fluid; its **mass** is given by:

$$m(V_t) = \int_{V_t}
ho(t, ec{r}) \, dV$$

Principle of conservation of mass enclosed within that volume:

$$\frac{d}{dt}m(V_t) = \frac{d}{dt}\int_{V_t}\rho(t,\vec{r}) \, dV = 0$$

Applying the transport theorem for the density (scalar field):

$$0 = \frac{d}{dt} \int_{V_t} \rho(t, \vec{r}) \, dV = \int_{V_t} \left[\frac{D\rho}{Dt} + \rho(\nabla \cdot \vec{v}) \right] \, dV$$

where the convective derivative is defined as

 $= \frac{D}{Dt} \equiv \frac{\partial}{\partial t} + \vec{v} \cdot \nabla$

Since the previous equation must hold for any volume V_t we obtain the **continuity equation**:

$$\frac{D\rho}{Dt} + \rho(\nabla \cdot \vec{v}) = 0 \implies \frac{D\log\rho}{Dt} = -\Theta \implies \underbrace{\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho\vec{v}) = 0}$$

Corolary:

$$-\frac{\partial}{\partial t}\int_V \rho\,dV = \int_{\partial V} \rho\vec{v}\cdot d\vec{\Sigma}$$

the variation of the mass enclosed in a fixed volume V is equal to the flux of mass across the surface at the boundary of the volume.

Incompressible fluid:
$$\nabla \cdot \vec{v} = 0 \iff \frac{D\rho}{Dt} = 0$$

Momentum balance (Euler's equation)

"the variation of momentum of a given portion of fluid is equal to the net force (stresses plus external forces) exerted on it" (Newton's 2nd law):

$$\frac{d}{dt}\int_{V_t}\rho\vec{v}\,dV = -\int_{\partial V_t}p\,d\vec{\Sigma} + \int_{V_t}\vec{G}\,dV = \int_{V_t}[\vec{G} - \nabla p]\,dV$$

Applying the transport theorem on the l.h.s. of the above equation:

$$\int_{V_t} \left[\frac{\partial}{\partial t} (\rho \vec{v}) + (\vec{v} \cdot \nabla) (\rho \vec{v}) + \rho \vec{v} (\nabla \cdot \vec{v}) \right] \, dV = \int_{V_t} [\vec{G} - \nabla p] \, dV$$

which must be valid for any volume V_t , hence:

$$\frac{\partial}{\partial t}(\rho \vec{v}) + (\vec{v} \cdot \nabla)(\rho \vec{v}) + \rho \vec{v} (\nabla \cdot \vec{v}) = \vec{G} - \nabla p$$

After some algebra and using the continuity eq. we obtain **Euler's eq.**:

$$\rho \frac{D \vec{v}}{D t} = \vec{G} - \nabla p \, \Leftrightarrow \, \rho \vec{a} = \vec{G} - \nabla p$$

Energy conservation

Let E be the total energy of the fluid, kinetic + internal energy:

$$E = E_{\rm K} + E_{\rm int} = \frac{1}{2} \int_{V_t} \rho \vec{v}^2 \, dV + \int_{V_t} \rho \varepsilon \, dV$$

Principle of energy conservation: "the variation in time of the total energy of a portion of fluid is equal to the work done per unit time over the system by the stresses (internal forces) and the external forces".

$$\frac{dE}{dt} = \frac{d}{dt} \int_{V_t} \left(\frac{1}{2} \rho \vec{v}^2 + \rho \varepsilon \right) \, dV = - \int_{\partial V_t} p \vec{v} \cdot d\vec{\Sigma} + \int_{V_t} \vec{G} \cdot \vec{v} \, dV$$

After some algebra (transport theorem, divergence theorem) we obtain:

$$\int_{V_t} \left(\frac{\partial}{\partial t} \left(\frac{1}{2} \rho \vec{v}^2 + \rho \varepsilon \right) + \nabla \cdot \left[\left(\frac{1}{2} \rho \vec{v}^2 + \rho \varepsilon + p \right) \vec{v} \right] \right) \, dV = \int_{V_t} \rho \vec{g} \cdot \vec{v} \, dV \qquad \vec{g} = \frac{\vec{G}}{\rho}$$

which, as must be satisfied for any given volume, implies:

$$\frac{\partial}{\partial t} \left(\frac{1}{2} \rho \vec{v}^2 + \rho \varepsilon \right) + \nabla \cdot \left[\left(\frac{1}{2} \rho \vec{v}^2 + \rho \varepsilon + p \right) \vec{v} \right] = \rho \vec{g} \cdot \vec{v}$$

Hyperbolic system of conservation laws

The equations of perfect fluid dynamics are a nonlinear hyperbolic system of conservation laws:

$$\frac{\partial \vec{u}}{\partial t} + \frac{\partial \vec{f^i}}{\partial x^i} = \vec{s}(\vec{u})$$

state vector $\vec{u} = (\rho, \rho v^j, e)$

fluxes $\vec{f^i} = (\rho v^i, \rho v^i v^j + p \delta^{ij}, (e+p)v^i)$ source terms $\vec{s} = \left(0, -\rho \frac{\partial \Phi}{\partial x^j}, -\rho v^i \frac{\partial \Phi}{\partial x^i}\right)$

 \vec{g} is a conservative external force field (e.g. gravitational field):

$$\vec{g} = -\nabla\Phi \qquad \Delta\Phi = 4\pi G\rho$$

Hyperbolic system of conservation laws

The equations of perfect fluid dynamics are a nonlinear hyperbolic system of conservation laws:

$$\frac{\partial \vec{u}}{\partial t} + \frac{\partial \vec{f^i}}{\partial x^i} = \vec{s}(\vec{u})$$

state vector $\vec{u} = (\rho, \rho v^j, e)$ fluxes $\vec{f^i} = (\rho v^i, \rho v^i v^j + p \delta^{ij}, (e+p)v^i)$ source terms $\vec{s} = \left(0, -\rho \frac{\partial \Phi}{\partial x^j} + Q_M^j, -\rho v^i \frac{\partial \Phi}{\partial x^i} + Q_E + v^i Q_M^i\right)$

source terms in the momentum and energy equations Q_{M}^{i}, Q_{E} due to coupling between matter and radiation (when transport phenomena are taken into account).

Hyperbolic equations have finite propagation speed: information can travel with limited speed, at most that given by the largest **characteristic curves** of the system.

The region of influence of the solution is bounded by the eigenvalues of the Jacobian matrix of the system.

A bit on viscous fluids

A perfect fluid can be defined as that for which the force across the surface separating two fluid particles is normal to that surface.

Kinetic theory tells us that the existence of velocity gradients implies the appearance of a force tangent to the surface separating two fluid layers (across which there is molecular difussion).

where II is the pressure tensor which $d\vec{F} = -pd\vec{\Sigma} \Rightarrow \vec{dF} = -\Pi d\vec{\Sigma}$ depends on pressure and velocity gradients. $\Pi = pI - S \text{ where } S \text{ is the } \underline{\text{stress tensor}} \text{ given by: } \mathcal{S} = 2\mu \left(D - \frac{1}{3} \Theta \mathbb{I} \right) + \xi \Theta \mathbb{I}$ sing the pressure tensor in the previous distortion expansion Using the pressure tensor in the previous derivation of the Euler eq. and of the energy eq. shear and bulk viscosities yields their viscous versions: $\rho \frac{D \vec{v}}{D t} = \vec{G} - \nabla p + \mu \Delta \vec{v} + \left(\xi + \frac{1}{3}\mu\right) \nabla \cdot \left(\nabla \cdot \vec{v}\right) \quad \text{Navier-Stokes eq.}$ $\rho \frac{D\left(\frac{1}{2}\vec{v}^2 + \varepsilon\right)}{Dt} = \rho \vec{g} \cdot \vec{v} - \nabla \cdot (p\vec{v}) + \nabla \cdot (\mathcal{S} \cdot \vec{v}) - \nabla \cdot \vec{Q} \quad \text{Energy eq.}$

General relativistic hydrodynamics

The general relativistic hydrodynamics equations are obtained from the **local conservation laws of the stress-energy tensor**, $T^{\mu\nu}$ (the Bianchi identities), **and of the matter current density** J^{μ} (the continuity equation):

$$abla_{\mu}(
ho u^{\mu}) = 0 \quad
abla_{\mu}T^{\mu
u} = 0 \quad
ext{Equations of motion}_{(\mu = 0, \cdots, 3)}$$

 $\nabla \mu$ covariant derivative associated with the four dimensional spacetime metric $g_{\mu\nu}$

The density current is given by $\ J^{\mu}=
ho u^{\mu}$

 u^{μ} is the fluid 4-velocity and $~\rho~$ is the rest-mass density in a locally inertial reference frame.

The stress-energy tensor for a **non-perfect fluid** is defined as:

$$T^{\mu\nu} = \rho (1 + \varepsilon) u^{\mu} u^{\nu} + (p - \mu \Theta) h^{\mu\nu} - 2\xi \sigma^{\mu\nu} + q^{\mu} u^{\nu} + q^{\nu} u^{\mu}$$

where ε is the specific internal energy density of the fluid, p is the pressure, and $h^{\mu\nu}$ is the spatial projection tensor, $h^{\mu\nu}=u^{\mu}u^{\nu}+g^{\mu\nu}$. In addition, μ and ξ are the shear and bulk viscosity coefficients.

The expansion, Θ , describing the divergence or convergence of the fluid world lines is defined as $\Theta = \nabla_{\mu} u^{\nu}$. The symmetric, trace-free, and spatial shear tensor $\sigma^{\mu\nu}$ is defined by:

$$\sigma^{\mu\nu} = \frac{1}{2} (\nabla_{\alpha} u^{\mu} h^{\alpha\nu} + \nabla_{\alpha} u^{\nu} h^{\alpha\mu}) - \frac{1}{3} \Theta h^{\mu\nu}$$

Finally q^{μ} is the energy flux vector.

In the following we will neglect non-adiabatic effects, such as viscosity or heat transfer, assuming the stress-energy tensor to be that of a **perfect fluid**:

$$T^{\mu\nu} = \rho h u^{\mu} u^{\nu} + p g^{\mu\nu}$$

where we have introduced the relativistic specific enthalpy, \underline{h}

$$h = 1 + \varepsilon + \frac{p}{\rho}$$

Conservation laws with respect to an explicit coordinate chart

Scalar x⁰ represents a foliation of spacetime with hypersurfaces (with coordinates xⁱ), g=det(g_{µv}), and $\Gamma^{\nu}_{\mu\lambda}$ are the Christoffel symbols.

The system formed by the eqs of motion and the continuity eq must be supplemented with an **equation of state** (EOS) relating the pressure to some fundamental thermodynamical quantities, e.g.

$$p = p(\rho, \varepsilon) \qquad \begin{array}{ll} \mbox{Perfect fluid:} & p = (\Gamma - 1)\rho\varepsilon \\ \mbox{Polytrope:} & p = \kappa\rho^{\Gamma}, \quad \Gamma = 1 + \frac{1}{N} \end{array}$$

In the "test-fluid" approximation (fluid's self-gravity neglected), the dynamics of the matter fields is fully described by the previous conservation laws and the EOS. If such approximation does not hold, the previous equations must be solved in conjunction with Einstein's equations for the gravitational field which describe the evolution of a dynamical spacetime:

$$\left(\begin{array}{cc} \nabla_{\mu}(\rho u^{\mu}) = 0 & R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi T_{\mu\nu} \\ \nabla_{\mu}T^{\mu\nu} = 0 & \text{Einstein's equations} \\ p = p(\rho, \varepsilon) & \end{array} \right) \begin{array}{c} \text{(details on Lecture 2)} \\ \end{array}$$

(Newtonian analogy: Euler's equation + Poisson's equation)

3+1 GR Hydro equations: formulations

$$\frac{\partial}{\partial x^{\mu}} (\sqrt{-g}\rho u^{\mu}) = 0$$
$$\frac{\partial}{\partial x^{\mu}} (\sqrt{-g}T^{\mu\nu}) = \sqrt{-g}\Gamma^{\nu}_{\mu\lambda}T^{\mu\lambda}$$

Different formulations exist depending on:

1. Choice of slicing: level surfaces of x^0 spatial (3+1) or null

2. Choice of physical (primitive) variables (ρ , ϵ , u^{i} ...)

Wilson (1972) wrote the system as a set of advection equation within the 3+1 formalism. Non-conservative.

Conservative formulations well-adapted to numerical methodology are more recent:

- Martí, Ibáñez & Miralles (1991): 1+1, general EOS
- Eulderink & Mellema (1995): covariant, perfect fluid
- Banyuls et al (1997): 3+1, general EOS ("Valencia formulation")
- Papadopoulos & Font (2000): covariant, general EOS

Relativistic shock reflection

The relativistic shock reflection problem is a demanding test involving the heating of a cold gas which impacts at relativistic speed with a solid wall creating a shock which propagates off the wall.

Non-conservative formulations show limitations when simulating ultrarelativistic flows (Centrella & Wilson 1984, Norman & Winkler 1986).

Relativistic shock reflection test relative errors as a function of the fluid's Lorentz factor W. For $W \approx 2$ ($v \approx 0.86c$), error ~ 5-7% (depends on the adiabatic index of the EOS) and shows a linear increase with W.

Ultrarelativistic flows could only be handled once conservative formulations were adopted (Martí, Ibáñez & Miralles 1991; Marquina et al 1992)

Valencia's conservative formulation (Banyuls et al 1997)

Numerically, the hyperbolic and conservative nature of the GRHD equations allows to design a solution procedure based on the characteristic speeds and fields of the system, translating to relativistic hydrodynamics existing tools of CFD.

3+1: foliation of spacetime with spatial hypersurfaces Σ_t with constant t. Line element:

$$ds^{2} = -(\alpha^{2} - \beta_{i}\beta^{i})dt^{2} + 2\beta_{i}dx^{i}dt + \gamma_{ij}dx^{i}dx^{j}$$

Eulerian observer: at rest on the hypersurface; moves from Σ_t to $\Sigma_{t+\Delta t}$ along the unit normal vector. Speed given by:

$$v^{i} = \frac{1}{\alpha} \left(\frac{u^{i}}{u^{t}} + \beta^{i} \right)$$

normal line fluid worldlines Σ_2 n v v Σ_1

$$\begin{split} \frac{\text{Hyperbolic system:}}{\frac{1}{\sqrt{-g}} \left(\frac{\partial \sqrt{\gamma} \mathbf{U}}{\partial x^0} + \frac{\partial \sqrt{-g} \mathbf{F}^i}{\partial x^i} \right) &= \mathbf{S} \\ \mathbf{U} &= (D, S_j, \tau) \\ \mathbf{F}^i &= \left(D \left(v^i - \frac{\beta^i}{\alpha} \right), S_j \left(v^i - \frac{\beta^i}{\alpha} \right) + p \delta^i_j, \tau \left(v^i - \frac{\beta^i}{\alpha} \right) + p v^i \right) \\ \mathbf{S} &= \left(0, T^{\mu\nu} \left(\frac{\partial g_{\nu j}}{\partial x^{\mu}} - \Gamma^{\delta}_{\nu\mu} g_{\delta j} \right), \alpha \left(T^{\mu 0} \frac{\partial \ln \alpha}{\partial x^{\mu}} - T^{\mu\nu} \Gamma^0_{\nu\mu} \right) \right) \end{split}$$

First-order flux-conservative hyperbolic system

$$egin{aligned} D &=
ho W \ S_j &=
ho h W^2 v_j \ & au &=
ho h W^2 - p - D \end{aligned} \qquad egin{aligned} W^2 &= rac{1}{1 - v^j v_j} \ Lorentz \ ext{factor} \end{aligned} \qquad egin{aligned} h &= 1 + arepsilon + rac{p}{
ho} \ \end{pmatrix} \ \end{array}$$

Recovering special relativistic and Newtonian limits

Eigenvalues (characteristic speeds)

Numerical schemes based on Riemann solvers use the local characteristic structure of the hyperbolic system of equations.

The eigenvalues (characteristic speeds) are all real (but not distinct, one showing a threefold degeneracy), and a complete set of right-eigenvectors exists. The above system satisfies, hence, the definition of hyperbolicity.

Eigenvalues (along the x direction)

$$\lambda_{0} = \alpha v^{x} - \beta^{x} \text{ (triple)}$$

$$\lambda_{\pm} = \frac{\alpha}{1 - v^{2} c_{s}^{2}} \left\{ v^{x} (1 - c_{s}^{2}) \pm c_{s} \sqrt{(1 - v^{2}) [\gamma^{xx} (1 - v^{2} c_{s}^{2}) - v^{x} v^{x} (1 - c_{s}^{2})]} \right\} - \beta^{x}$$

Special relativistic limit (along x-direction)

$$\lambda_{0} = v^{x} \text{ (triple)}$$

$$\lambda_{\pm} = \frac{1}{1 - (v^{2}c_{s}^{2})} \left(v^{x} \left(1 - c_{s}^{2} \right) \pm c_{s} \sqrt{1 - v^{2}} \left[1 - v^{x}v^{x} - \left(v^{2} - v^{x}v^{x} \right) c_{s}^{2} \right] \right)$$

coupling with transversal components of the velocity (important difference with Newtonian case)

 $\frac{v^x \pm c_s}{1 \pm v^x c_s}$

Even in the purely 1D case:

$$\vec{v} = (v^x, 0, 0) \Rightarrow \lambda_0 = v^x, \ \lambda_{\pm} =$$

For causal EOS sound cone lies within light cone

General relativistic MHD

Dynamics of relativistic, electrically conducting fluids in the presence of magnetic fields.

Ideal GRMHD: Absence of viscosity effects and heat conduction in the limit of infinite conductivity (perfect conductor fluid).

The stress-energy tensor includes contribution from the perfect fluid and from the magnetic field b^µ measured by observer comoving with the fluid.

 $T^{\mu\nu} = T^{\mu\nu}_{\rm PF} + T^{\mu\nu}_{\rm EM} \qquad \qquad T^{\mu\nu} = \rho h^* u^{\mu} u^{\nu} + p^* g^{\mu\nu} - b^{\mu} b^{\nu}$ $T^{\mu\nu}_{\rm PF} = \rho h u^{\mu} u^{\nu} + p g^{\mu\nu} \qquad \qquad \text{with the definitions:}$ $T^{\mu\nu}_{\rm EM} = F^{\mu\lambda} F^{\nu}_{\lambda} - \frac{1}{4} g^{\mu\nu} F^{\lambda\delta} F_{\lambda\delta} = \left(u^{\mu} u^{\nu} + \frac{1}{2} g^{\mu\nu} \right) b^2 - b^{\mu} b^{\nu} \qquad \qquad b^2 = b^{\nu} b_{\nu}$ $I \text{ deal MHD condition:} \qquad F^{\mu\nu} = -\eta^{\mu\nu\lambda\delta} u_{\lambda} b_{\delta} \qquad \qquad p^* = p + \frac{b^2}{2}$ $I \text{ electric four-current} \qquad \qquad F^{\mu\nu} u_{\nu} = 0 \qquad \qquad h^* = h + \frac{b^2}{\rho}$ $J^{\mu} = \rho_{q} u^{\mu} + \sigma F^{\mu\nu} u_{\nu} \qquad \sigma \to \infty$

General relativistic MHD: equations Antón et al. (2006) Conservation of mass: $\nabla_{\mu}(\rho u^{\mu}) = 0$ Conservation of energy and momentum: $\nabla_{\mu}T^{\mu\nu} = 0$ $*F^{\mu\nu} = \frac{1}{W}(u^{\mu}B^{\nu} - u^{\nu}B^{\mu})$ Maxwell's equations: $\nabla_{\mu} * F^{\mu\nu} = 0$ • Divergence-free constraint: $\vec{\nabla} \cdot \vec{B} = 0$ • Induction equation: $\frac{1}{\sqrt{\gamma}} \frac{\partial}{\partial t} \left(\sqrt{\gamma} \vec{B} \right) = \vec{\nabla} \times \left[\left(\alpha \vec{v} - \vec{\beta} \right) \times \vec{B} \right]$ Induction equation: Adding all up: first-order, flux-conservative, hyperbolic system + constraint $\left|\frac{1}{\sqrt{-g}}\left(\frac{\partial\sqrt{\gamma}\mathbf{U}}{\partial t} + \frac{\partial\sqrt{-g}\mathbf{F}^{i}}{\partial x^{i}}\right) = \mathbf{S} \qquad \frac{\partial(\sqrt{\gamma}B^{i})}{\partial x^{i}} = 0\right|$

 $D = \rho W \qquad S_j = \rho h^* W^2 v_j - \alpha b_j b^0 \qquad \tau = \rho h^* W^2 - p^* - \alpha^2 (b^0)^2 - D$

$$\mathbf{U} = \begin{bmatrix} D\\S_{j}\\\tau\\B^{k} \end{bmatrix} \mathbf{F}^{i} = \begin{bmatrix} D\tilde{v}^{i}\\S_{j}\tilde{v}^{i} + p^{*}\delta_{j}^{i} - b_{j}B^{i}/W\\\tau\tilde{v}^{i} + p^{*}v^{i} - \alpha b^{0}B^{i}/W\\\tilde{v}^{i}B^{k} - \tilde{v}^{k}B^{i} \end{bmatrix} \mathbf{S} = \begin{bmatrix} 0\\T^{\mu\nu}\left(\frac{\partial g_{\nu j}}{\partial x^{\mu}} - \Gamma^{\delta}_{\nu\mu}g_{\delta j}\right)\\\alpha\left(T^{\mu0}\frac{\partial \ln\alpha}{\partial x^{\mu}} - T^{\mu\nu}\Gamma^{0}_{\nu\mu}\right)\\0^{k} \end{bmatrix}$$

MHD equations: hyperbolic structure

Wave structure classical MHD (Brio & Wu 1988): 7 physical waves

Two ALFVEN WAVES: $\lambda_{a_{\pm}} \implies \lambda_{a} = v_{x} \pm v_{a}$ Two FAST MAGNETOSONIC WAVES: $\lambda_{f_{\pm}} \implies \lambda_{f_{\pm}} = v_{x} \pm v_{f}$ Two SLOW MAGNETOSONIC WAVES: $\lambda_{s_{\pm}} \implies \lambda_{s_{\pm}} = v_{x} \pm v_{s}$ One ENTROPY WAVE: $\lambda_{e} \implies \lambda_{e} = v_{x}$ $\lambda_{f_{\pm}} \leq \lambda_{a_{\pm}} \leq \lambda_{s_{\pm}} \leq \lambda_{e} \leq \lambda_{s_{\pm}} \leq \lambda_{a_{\pm}} \leq \lambda_{f_{\pm}}$

$$v_{f,s}^{2} = \frac{1}{2} \left\{ c_{s}^{2} + \frac{B_{x}^{2} + B_{y}^{2} + B_{z}^{2}}{\rho} \pm \sqrt{\left(c_{s}^{2} + \frac{B_{x}^{2} + B_{y}^{2} + B_{z}^{2}}{\rho} \right)^{2} - 4\left(\frac{B_{x}^{2}}{\rho} \right) c_{s}^{2}} \right\}, \ v_{a} = \sqrt{\frac{B_{x}^{2}}{\rho}}$$

<u>Anile</u> & Pennisi (1987), Anile (1989) (see also van Putten 1991) have studied the characteristic structure of the equations (eigenvalues, right/left eigenvectors) in the space of covariant variables (u^µ, b^µ, p, s).

Wave structure for relativistic MHD (Anile 1989): roots of the characteristic equation.

Only entropic waves and Alfvén waves are explicit.

Magnetosonic waves are given by the numerical solution of a quartic equation.

Augmented system of equations: Unphysical eigenvalues/eigenvectors (entropy & Alfvén) which must be removed numerically (Anile 1989, Komissarov 1999, Balsara 2001, Koldoba et al 2002).

Further reading

A.M. Anile, "Relativistic fluids and magneto-fluids", Cambridge University Press (1989)

J.M. Martí & E. Müller, "Numerical hydrodynamics in special relativity", Living Reviews in Relativity (2003)

J.A. Font, "Numerical hydrodynamics and magnetohydrodynamics in general relativity", Living Reviews in Relativity (2008)

F. Banyuls et al, "Numerical 3+1 general relativistic hydrodynamics: a local characteristic approach", Astrophysical Journal, 476, 221 (1997)

L. Antón et al, "Numerical 3+1 general relativistic magnetohydrodynamics: a local characteristic approach", Astrophysical Journal, 637, 296 (2006)

L. Rezzolla & O. Zanotti, "Relativistic hydrodynamics", Oxford University Press (2013)